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ABSTRACT

This dissertation contributes to Bayesian statistics and economics using latent variable

methods. The first chapter explores interweaving methods for constructing Markov chains in

dynamic linear models (DLMs). Here, several new data augmentations are defined for the

DLM, and a negative result concerning the sort of augmentations that can be found for the

model is proved. A simulation study using a specific DLM illuminates when each of several

DA and interweaving algorithms performs well. The second chapter is an extention of the

first, introducing a method to extend the results of the first chapter to DLMs where the

observation level matrix is not square. Finally, the last chapter develops methods for Bayesian

causal inference to compare two treatments using partial identification methods. Specifically,

it develops priors that capture the intuition of standard partial identification methods in the

Bayesian setting and extends those prior to a hierarchical setting. Then it illustrates how to use

the model with these priors in an example evaluating the effectiveness of the National School

Lunch Program.
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CHAPTER 1. INTRODUCTION

This dissertation is a collection of papers in the large and varied field of Bayesian statistics

and econometrics. The Bayesian method has proven to be a powerful technique for combining

data and prior knowledge to answer scientific questions when the appropriate model can be

constructed and the posterior distribution can be computed, but there are always limits to our

ability to perform both tasks. This dissertation attempts to improve our collective abilities to

overcome both obstacles largely by using latent variable techniques.

1.1 Interweaving in dynamic linear models

Historically the largest impediment to Bayesian statistics was computation. Due to the

work of Reverend Thomas Bayes and Pierre-Simon Laplace the statistics and mathematics

communities have known about Bayes’ rule and the Bayesian method for approaching statistical

inference for a couple hundred years, but it was treated more as a theoretical curiosity than

a practically applicable method of inference with the rise of Fisherian and Neyman-Pearson

schools of statistical inference. It was only with the Markov chain Monte Carlo (MCMC)

revolution in the late twentieth century that Bayesian statistics began to be seen as a method

one could actually use rather than just talk about.

The central idea of MCMC is to construct a Markov chain on the model’s parameter space

that converges in distribution to the posterior distribution of the model we are interested in.

While it is easy to construct a Markov chain that is guaranteed to converge to the target

distribution eventually, it has always been much harder to guarantee quick convergence and a

vast literature exists exploring the various way to construct and improve these chains. One

method of constructing an appropriate Markov chain is called data augmentation or more

literally state-space expansion. This method works by creating additional parameters for the
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model, often called missing data or augmented data, but we can think of them as latent

variables. To complete the data augmentation method we must construct a Markov chain

on the larger parameter space. In many problems there exists natural missing data and the

so called data augmentation algorithm represents a drastic speed up compared to any easily

implementable Markov chain that lives in the original parameter space.

Data augmentation algorithms are still often plagued with slow convergence and a large

literature developed around speeding of these algorithms. A relatively new method in this lit-

erature, called interweaving, uses two or more data augmentations and “weaves” them together

inside a larger Markov chain on the expanded state-space. Chapter 2 of this dissertation applies

this method to a class of time series models called dynamic linear models (DLMs). These mod-

els are linear, Gaussian state-space models MCMC algorithms constructed to compute their

posterior can often be slow to converge. In order to apply the ideas of interweaving to these

models I construct new data augmentations and stumble across a limitation of interweaving

along the way.

1.2 Latent representation of group and treatment means

As with all new methods, there were some initial limitations to how the interweaving meth-

ods could be applied to DLMs. Chapter 3 provides an example of how to overcome these

methods in the context of analyzing an economic experiment. This experiment consists of

several treatments, each with about several replications, and each replication consists of 35

periods. A hierarchical DLM for the response variable is natural in this setting. I construct

such a model for a single treatment of the experiment. The entire treatment has a mean that

evolves over time and each replication of the treatment has a deviation from that mean that

independently evolves over time. This allows us to think about treatment and replication level

evolutions separately while still allowing for shrinkage between the replication level means.

In order to use the interweaving algorithms it took a little creativity in order to apply them.

The model I construct does not have a square observation level matrix, Ft, so the interweaving

methods I constructed in Chapter 2 do not directly apply. Instead of augmenting Ft, which is

one method of getting them to work, I instead applied the methods of Chapter 2 to the model
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conditional on one of the parameters being fixed. Then everything can be put together in a

larger Gibbs sampler which alternates between drawing the fixed parameter and drawing the

the rest of the parameters through the interweaving steps.

1.3 Modeling treatment effects using latent variables

A crucial area in econometrics is causal inference and, in particular, program evaluation.

Public policy programs are implemented every day without random controls and it is challenging

to evaluate their consequences. In the simplest cast most programs allow any eligible individual

to participate. This causes problems for trying to evaluate the efficacy of the program because

individuals who choose to participate are often systematically different from individuals who

choose not to participate, and these differences are usually at least partially unobservable.

A modeling language for causal inference has been developed in the social sciences for

dealing with such problems, centered on the notion of a potential outcome. We think of each

individual as having two potential outcomes – one if they participated in the program and one

if they did not. The outcomes could be any response variable of interest – income, education,

nutrition, etc. One of these outcomes we observe directly while the other is purely hypothetical,

but we need to learn about this hypothetical outcome in order to learn about whether and how

much the treatment improved or harmed the individual’s situation. The basic idea, then, is

to model the relationship between the observed outcome and the missing hypothetical, often

called the missing counterfactual.

One approach to causal inference in this framework is called partial identification. The

idea is to construct a data model that is fully parameterized so that the parameters driving

the missing counterfactual are unidentified. Then, relate the unidentified parameters back to

the identified parameters by bounding them or some function of them. Estimates of identified

parameters then allow us to bound unidentified parameters and, more important, treatment

effects – i.e. the difference between what would happen to an individual if they were on the

program and what would happen to them if they were not on the program.

Often it is difficult to construct complicated models and perform partial identification in

frequentist settings due to the difficulty understanding the variation in set estimators in order
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to construct confidence intervals. In the Bayesian context, computing posteriors in partially

identified models is fairly straightforward. There is some difficulty with MCMC for parameters

which are unidentified in the likelihood, but these are often surmountable.

This is the subject of Chapter 4 – an extension to Bayesian partial identification methods

that only forces a particular constraint to hold some fraction of the time. Rather, each con-

straint holds with some probability which can be adjusted in order to represent how plausible

we think it is. In order to construct priors capturing this notion in a hierarchical setting I ul-

timately have to resort to creating latent variables which determine the distribution of certain

probabilities. The approach is then applied to the effect of the National School Lunch Program

on whether or not a child from an income eligible household is food secure.

Throughout this dissertation, the common thread is using latent variables to construct

better models and improve computation. This theme appears over and over again – in the

context of data augmentation algorithms which are emphasized in Chapter 2 but are used in

all three chapters, and in the context of constructing appropriate models in Chapters 3 and 4.
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CHAPTER 2. INTERWEAVING MARKOV CHAIN MONTE CARLO

STRATEGIES FOR EFFICIENT ESTIMATION OF DYNAMIC

LINEAR MODELS

A paper under revision for The Journal of Computational and Graphical Statistics

Abstract

In dynamic linear models (DLMs) with unknown fixed parameters, a standard Markov chain

Monte Carlo (MCMC) sampling strategy is to alternate sampling of latent states conditional on

fixed parameters and sampling of fixed parameters conditional on latent states. In some regions

of the parameter space, this standard data augmentation (DA) algorithm can be inefficient.

To improve efficiency, we seek to employ the interweaving strategies of Yu and Meng (2011)

that combine separate DAs by weaving them together. For this, we introduce a number of

novel alternative DAs for a general class of DLMs: the scaled errors, wrongly-scaled errors,

and wrongly-scaled disturbances. With the latent states and the less commonly used scaled

disturbances, this yields five unique DAs to employ in MCMC algorithms. Each DA implies a

unique MCMC sampling strategy and they can be combined into interweaving or alternating

strategies that improve MCMC efficiency. We assess the strategies using the local level DLM

and demonstrate that several strategies improve efficiency relative to the standard approach, the

most efficient being either interweaving or alternating the scaled errors and scaled disturbances.



www.manaraa.com

6

2.1 Introduction

The Data Augmentation (DA) algorithm of Tanner and Wong (1987) and the closely re-

lated Expectation Maximization (EM) algorithm of Dempster et al. (1977) have become widely

used strategies for computing posterior distributions and maximum likelihood estimates, with

a long history of using ideas from the EM literature to inform the construction of DA algo-

rithms and vice versa (Meng and Van Dyk, 1997; Van Dyk and Meng, 2010). While useful,

DA and EM algorithms often suffer from slow convergence s a large literature has grown up

around various possible improvements to both algorithms (Meng and Van Dyk, 1997, 1999;

Liu and Wu, 1999; Hobert and Marchev, 2008; Yu and Meng, 2011), though much of the work

on constructing improved algorithms has focused on hierarchical models (Gelfand et al., 1995;

Roberts and Sahu, 1997; Meng and Van Dyk, 1998; Van Dyk and Meng, 2001; Bernardo et al.,

2003; Papaspiliopoulos et al., 2007; Papaspiliopoulos and Roberts, 2008). Despite some simi-

larities with some hierarchical models, relatively little attention has been paid to time series

models. Exceptions include (Pitt and Shephard, 1999; Frühwirth-Schnatter and Sögner, 2003;

Frühwirth-Schnatter and Wagner, 2006) in the DA literature and(Van Dyk and Tang, 2003) in

the EM literature.

We seek to improve DA schemes in dynamic linear models (DLMs), i.e. linear Gaussian

state-space models. The standard DA scheme uses the latent states and alternates between

drawing from the full conditional distributions of the latent states and the model parameters

(Frühwirth-Schnatter, 1994; Carter and Kohn, 1994). The existing literature on improving

DA algorithms in time series models tends to focus on non-Gaussian state-space models —

particularly the stochastic volatility model and models based on it (Shephard, 1996; Frühwirth-

Schnatter and Sögner, 2003; Roberts et al., 2004; Bos and Shephard, 2006; Strickland et al.,

2008; Frühwirth-Schnatter and Sögner, 2008; Kastner and Frühwirth-Schnatter, 2014), but

a few work with the class of DLMs we consider (Frühwirth-Schnatter, 2004). One recent

development in the DA literature is an “interweaving” strategy for using two separate DAs in a

single algorithm (Yu and Meng, 2011). This strategy draws on the strengths of both underlying
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DA algorithms in order to construct an MCMC algorithm which is at least as efficient as the

worst of the two DA algorithms and typically at least as efficient as the best. We implement

interweaving algorithms in a general class of DLMs and in order to do so we introduce several

new DAs for this class of models. We also show under some assumptions that no practical

sufficient augmentation (centered augmentation) exists for the DLM, which restricts the sort

of interweaving algorithms we can construct. Using the local level model, we fit the model

to simulated data using a variety of the MCMC strategies we discuss in order to assess their

relative performance.

The rest of the paper is organized as follows. In Section 2.2 we review the DA literature

while in Section 2.3 we introduce the dynamic linear model and discuss the subclass of DLMs

we consider. Section 2.4 explores several possible DAs for our class of DLMs and shows that

any sufficient augmentation is likely to be difficult to use. Section 2.5 discusses the various

MCMC strategies available for the DLM while Section 2.6 applies these algorithms to the local

level model. Finally, Section 2.7 discusses these results and suggests directions for further

research. In addition, several additional sections serve to supplement the main body of the

paper. Section 2.A contains a derivation of the marginal model for the data in a class of DLMs,

Section 2.B contains a proof of Lemma 1, while Section 2.C explicitly constructs the wrongly-

scaled DAs. Section 2.D shows the full conditional distributions of each block of parameters in

the DLM under a variety of parameterizations while Section 2.E shows how to draw from the full

conditional of the latent states using the mixed Cholesky factorization algorithm. Next, Section

2.F shows how to use some of the DAs we introduce when Ft is not invertible while Sections

2.G and 2.H show how to draw from some of the difficult full conditional distributions that

appear under certain paramaterizations. Section 2.I shows that certain classes of interweaving

algorithms are equivalent for the DLM and Section 2.J introduces another class of interweaving

algorithms that is also equivalent to certain algorithms discussed in the main body. Finally

Section 2.K uses the behavior of the posterior to help explain how the various MCMC algorithms

perform while Section 2.M contains additional plots to supplement those covered Section 2.6.3.
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2.2 Variations of data augmentation

Suppose p(φ|y) is a probability density, for example the posterior distribution of some

parameter φ given data y. Then a DA algorithm adds a DA θ with joint distribution p(φ, θ|y)

such that
∫

Θ p(φ, θ|y)dθ = p(φ|y). The DA algorithm is a Gibbs sampler for (φ, θ), except we

focus attention on the marginal chain for φ. In this DA algorithm, the k + 1’st state of φ is

obtained from the k’th state as follows (we implicitly condition on the data y in all algorithms

and only superscript the previous and new draws of the model parameters of interest):

Algorithm: DA. Data Augmentation

[θ|φ(k)] → [φ(k+1)|θ]

where [θ|φ(k)] means a draw of θ from p(θ|φ(k), y) and [φ(k+1)|θ] means a draw from p(φ|θ, y).

The DA need not be interesting in any scientific sense — it can be viewed purely as a compu-

tational construct.

2.2.1 Reparameterization and alternating DAs

One well known method of improving mixing and convergence in MCMC samplers as well

as convergence in EM algorithms is reparameterization of the model (see Papaspiliopoulos et al.

(2007) and references therein). The DA θ is called a sufficient augmentation (SA) for the model

parameter φ if p(y|θ, φ) = p(y|θ). Similarly θ is called an ancillary augmentation (AA) for φ if

p(θ|φ) = p(θ). An SA is sometimes called a centered augmentation or centered parameterization

in the literature while an AA is sometimes called a non-centered augmentation or non-centered

parameterization. Like Yu and Meng (2011) we prefer the SA and AA terminology because

it suggests a connection with Basu’s theorem (Basu, 1955), which we will return to in Section

2.2.2.

A key reason behind the emphasis on SAs and AAs is that typically when the DA algorithm

based on the SA has nice mixing and convergence properties, the DA algorithm based on the AA

has poor mixing and convergence properties and vice-versa. This property suggests combining

the two such DA algorithms to construct an improved sampler. One intuitive approach is

to alternate between the two augmentations within a Gibbs sampler (Papaspiliopoulos et al.,
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2007). Suppose we have a second distinct DA γ such that
∫

Γ p(φ, γ|y)dγ = p(φ|y), then the

alternating algorithm for sampling from p(φ|y) is as follows:

Algorithm: Alt. Alternating Algorithm

[θ|φ(k)] → [φ|θ] → [γ|φ] → [φ(k+1)|γ].

One iteration of the alternating algorithm consists of one iteration of the DA algorithm based

on θ to obtain an intermediate value of φ, followed by one iteration of the DA algorithm based

on γ.

When φ and θ are highly dependent in their joint posterior, the draws from p(θ|φ, y) and

p(φ|θ, y) will hardly move the chain in Algorithm DA, resulting in high autocorrelation. In

an alternating algorithm, there are essentially two chances to substantially move the chain –

one using θ and the other using γ. Often at least one of θ and γ has low dependence with φ,

resulting in a chain that mixes well.

2.2.2 Interweaving: an alternative to alternating

Another option is to interweave the two DAs together (Yu and Meng, 2011). A global

interweaving strategy (GIS) is an MCMC algorithm that obtains φ(k+1) from φ(k) as follows:

Algorithm: GIS. Global Interweaving Strategy

[θ|φ(k)] → [γ|θ] → [φ(k+1)|γ].

The GIS algorithm obtains the next iteration of the parameter φ in three steps: 1) draw θ

conditional on φ(k), 2) draw γ conditional on θ, and 3) draw φ(k+1) conditional on γ. This

looks similar to the usual DA algorithm except a second DA is “weaved” in between the draw

of the first DA and of the parameter.

The second step of the GIS algorithm is often accomplished by sampling φ|θ and then γ|θ, φ.

If we expand this out, then the GIS algorithm becomes:

Algorithm: eGIS. Expanded GIS

[θ|φ(k)] → [φ|θ] → [γ|θ, φ] → [φ(k+1)|γ].

In addition, γ and θ are often, but not always, one-to-one transformations of each other condi-

tional on (φ, y), i.e. γ = M(θ;φ, y) where M(.;φ, y) is a one-to-one function, and thus [γ|θ, φ]
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is deterministic. The key difference between Algorithm GIS and Algorithm Alt can be seen

in step three of Algorithm eGIS: instead of drawing from p(γ|φ, y), the GIS algorithm draws

from p(γ|θ, φ, y), connecting the two DAs together while the alternating algorithm keeps them

separate.

Yu and Meng (2011) call a GIS approach where one of the DAs is an SA and the other is an

AA an ancillary sufficient interweaving strategy (ASIS). They show that the GIS algorithm has

a geometric rate of convergence no worse than the worst of the two underlying DA algorithms

and in some cases better than the the corresponding alternating algorithm. In particular, their

Theorem 1 suggests that the weaker the dependence between the two DAs in the posterior,

the more efficient the GIS algorithm. With a posteriori independent DAs, the GIS algorithm

obtains iid draws from φ’s posterior. This helps motivate their focus on ASIS and the choice of

terminology — conditional on the model parameter, an SA and an AA are independent under

the conditions of Basu’s theorem (Basu, 1955), which suggests that the dependence between

the two DAs will be limited in the posterior. In fact, when the prior on φ is nice in some

sense, Yu and Meng (2011) show that the ASIS algorithm is the same as the optimal parameter

expanded data augmentation (PX-DA) algorithm (Liu and Wu, 1999), which is closely related

to marginal and conditional augmentation (Meng and Van Dyk, 1999; Hobert and Marchev,

2008).

In addition to the GIS, it is possible to define a componentwise interweaving strategy

(CIS) that interweaves within specific steps of a Gibbs sampler as well. A CIS algorithm for

φ = (φ1, φ2) essentially employs interweaving for each block of φ separately, e.g.

Algorithm: CIS. Componentwise Interweaving Strategy

[θ1|φ(k)
1 , φ

(k)
2 ] → [γ1|φ(k)

2 , θ1] → [φ
(k+1)
1 |φ(k)

2 , γ1] →

[θ2|φ(k+1)
1 , φ

(k)
2 , γ1] → [γ2|φ(k+1)

1 , θ2] → [φ
(k+1)
2 |φ(k+1)

1 , γ2]

where θi and γi are distinct data augmentations for i = 1, 2, but potentially γ1 = θ2 or γ2 = θ1.

The first row draws φ1 conditional on φ2 using interweaving in a Gibbs step, while the second

row does the same for φ2 conditional on φ1. The algorithm can easily be extended to greater

than two blocks within φ. The main attraction of CIS is that it is often easier to find an AA–SA
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pair of DAs for φ1 conditional on φ2 and another pair for φ2 conditional on φ1 than it is to find

and AA–SA pair for φ = (φ1, φ2) jointly.

2.3 Dynamic linear models

The general dynamic linear model is well studied (West and Harrison, 1999; Petris et al.,

2009; Prado and West, 2010) and is defined as

yt = Ftθt + vt vt
ind∼ Nk(0, Vt) (observation equation)

θt = Gtθt−1 + wt wt
ind∼ Np(0,Wt) (system equation)

where Nd(µ,Σ) is a d-dimensional multivariate normal distribution with mean µ and covariance

Σ and the observation errors, vt for t = 1, 2, · · · , T , and system disturbances, wt for t =

1, 2, · · · , T , are independent. The observed data are y ≡ y1:T ≡ (y′1, y
′
2, · · · , y′T )′ while the

latent states are θ ≡ θ0:T ≡ (θ′0, θ
′
1, · · · , θ′T )′. For each t = 1, 2, · · · , T , Ft is a k × p matrix

and Gt is a p× p matrix. Let φ denote the vector of unknown parameters in the model. Then

possibly Ft, Gt, Vt, and Wt are all functions of φ for t = 1, 2, · · · , T .

The subclass of DLMs we will focus on sets Vt = V and Wt = W and treats Ft and Gt

as known for all t. Our results can be extended when Vt or Wt is time-varying or when Ft

or Gt depend on unknown parameters, but we ignore those cases for simplicity. As a result

φ = (V,W ) is our unknown parameter and we can write the model as

yt|θ, V,W
ind∼Nk(Ftθt, V ) θt|θ0:t−1, V,W ∼Np(Gtθt−1,W ) (2.1)

for t = 1, 2, · · ·T . We use the standard conditionally conjugate priors, that is θ0, V , and W

independent with θ0 ∼ Np(m0, C0), V ∼ IW (ΛV , λV ) and W ∼ IW (ΛW , λW ) where m0, C0,

ΛV , λV , ΛW , and λW are known hyperparameters and IW (Λ, λ) denotes the inverse Wishart

distribution with degrees of freedom λ and positive definite scale matrix Λ.

The latent states can be integrated out to obtain the marginal model for the y:

y|V,W ind∼ NTk(Dm̃, Ṽ + W̃ + C̃). (2.2)
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where Ṽ = IT ⊗ V , D is block diagonal with elements D1, . . . , DT ,

W̃Tk×Tk =

[
K ′1F

′
1 K ′2F

′
2 · · ·K ′TF ′T

]′
W

[
K ′1F

′
1 K ′2F

′
2 · · ·K ′TF ′T

]
,

C̃Tk×Tk =

[
H ′1F

′
1 H ′2F

′
2 · · ·H ′TF ′T

]′
C0

[
H ′1F

′
1 H ′2F

′
2 · · ·H ′TF ′T

]
,

m̃Tp×1 = (m′0,m
′
0, · · ·m′0)′, and Dt, Kt, and Ht are functions of the Ft’s and Gt’s for t =

1, 2, . . . , T . A derivation of this distribution is in Section 2.A.

2.4 Augmenting the DLM

The standard definition of the DLM includes the standard DA used in estimation of the

DLM, θ. We now introduce one data augmentation that is known, the scaled disturbances,

and three other novel augmentations: scaled errors, wrongly-scaled disturbances, and wrongly-

scaled errors. The primary purpose of these augmentations is for use in interweaving algorithms,

but each DA will also implicitly define a DA algorithm.

A natural way to create new DAs is by reparameterizing old DAs. Papaspiliopoulos et al.

(2007) note that typically the standard augmentation results in an SA for the parameter φ.

All that would be necessary for an ASIS algorithm, then, is to construct an AA for φ. We

immediately run into a problem because the standard DA for a DLM is θ but in equation (2.4)

V is in the observation equation so that θ is not an SA for (V,W ) while W is in the system

equation so that θ is not an AA for (V,W ) either. In order to find an SA we need to somehow

move V from the observation equation to the system equation and similarly to find an AA we

need to somehow move W from the system equation to the observation equation.

As Papaspiliopoulos et al. (2007) suggests, we can construct a pivotal quantity in order to

find an ancillary augmentation, e.g. by appropriately centering and scaling a random variable.

Notice from equation (2.4) that if we hold V constant then θ is an SA for W conditional on

V , i.e. for W |V . Similarly θ is an AA for V |W . This suggests that if we center and scale θt

by W appropriately for all t we will have an ancillary augmentation for V and W jointly, thus

creating the scaled disturbances (SDs).
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2.4.1 The scaled disturbances

To define the scaled disturbances let LW denote the Cholesky decomposition of W , i.e. the

lower triangle matrix LW such that LWL
′
W = W . Then we will define the scaled disturbances

γ ≡ γ0:T ≡ (γ′0, γ
′
1, · · · , γ′T )′ by γ0 = θ0 and γt = L−1

W (θt−Gtθt−1) for t = 1, 2, · · · , T . There are

actually p! different versions of the scaled disturbances depending on how we order the elements

of θt (Meng and Van Dyk, 1998) but we make no attempt to determine which ordering should

be used. The reverse transformation is defined recursively by θ0(γ, LW ) = γ0 and θt(γ, LW ) =

LWγt + Gtθt−1(γ, LW ) for t = 1, 2, · · · , T . Under the scaled disturbance parameterization we

can write the model as

yt|γ, V,W
ind∼ Nk (Ftθt(γ, LW ), V ) , γt

iid∼ Np(0, Ip) (2.3)

for t = 1, 2, · · · , T where Ip is the p × p identity matrix. Neither V nor W are in the sys-

tem equation so the scaled disturbances are an AA for (V,W ). The SDs are well known —

the disturbance smoother of Koopman (1993) finds the conditional posterior of the scaled dis-

turbances given the parameter and Frühwirth-Schnatter (2004) uses the SDs in a dynamic

regression model with stationary regression coefficients.

2.4.2 The scaled errors

The scaled disturbances immediately suggest our first novel augmentation called the scaled

errors (SEs), i.e. vt = yt − Ftθt appropriately scaled by V . Let LV denote the Cholesky

decomposition of V so that LV L
′
V = V , then we can define a version of the scaled errors as

ψt = L−1
V (yt − Ftθt) for t = 1, 2, · · · , T and ψ0 = θ0. This time there are k! versions of the

scaled errors depending on how yt is ordered.

Assuming Ft is invertible for all t (see Section and Simpson (2014) for examples of how to

relax this restriction), then θt = F−1
t (yt − LV ψt) for t = 1, 2, · · · , T while θ0 = ψ0. Define

µ1 = LV ψ1 +F1G1ψ0 and µt = LV ψt +FtGtF
−1
t−1(yt−1−LV ψt−1) for t = 2, 3, · · · , T . Then the

scaled error parameterization is

yt|V,W,ψ, y1:t−1 ∼ Np(µt, FtWF ′t), ψt
iid∼ Np(0, Ik)
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for t = 1, 2, · · · , T where Ik is the k × k identity matrix. Since neither V nor W are in the

system equation, we immediately see that the scaled errors are an AA for (V,W ). However,

both V and W are in the observation equation so that ψ is not an SA for V |W nor for W |V .

2.4.3 The “wrongly-scaled” DAs

Two other novel augmentations can be obtained by scaling the SD and SE by the “wrong”

variance so long as Ft is square, i.e. that V and W have the same dimension. Define γ̃t =

L−1
V (θt − Gtθt−1) and ψ̃t = L−1

W (yt − θt) for t = 1, 2, · · · , T and ψ̃0 = γ̃0 = θ0. Then the

wrongly-scaled disturbances (WSDs) are γ̃ ≡ γ̃0:T ≡ (γ̃′0, γ̃
′
1, · · · , γ̃′T )′ and the wrongly-scaled

errors (WSEs) are ψ̃ ≡ ψ̃0:T ≡ (ψ̃′0, ψ̃
′
1, · · · , ψ̃′T )′.

We can write the model in terms of γ̃ as

yt|γ̃, V,W
ind∼ Np (Ftθt(γ̃, LV ), V ) , γ̃t

ind∼ Np(0, L
−1
V W (L−1

V )′)

for t = 1, 2, · · · , T where θt(γ̃, LV ) denotes the transformation from γ̃ to θ defined by the

wrongly-scaled disturbances. Since LV is the Cholesky decomposition of V , the observation

equation does not contain W , so γ̃ is an SA for W |V . Since W and LV are both in the system

equation, γ̃ is not an AA for V |W nor for W |V .

Similarly, we can write the model in terms of ψ̃ as

yt|V,W, ψ̃, y1:t−1 ∼ Np(µ̃t, FtWF ′t), ψ̃t
iid∼ Np(0, L

−1
W V (L−1

W )′)

for t = 1, 2, · · · , T where we define µ̃1 = LW ψ̃1 − F1G1ψ̃0 and for t = 2, 3, · · · , T µ̃t = LW ψ̃t −

FtGtF
−1
t−1(yt−1 − LW ψ̃t−1). Since µ̃t only depends on W and not on V , V is absent from the

observation equation and thus ψ̃ is an SA for V |W . Once again, since both W and V are in

the system equation ψ̃ is not an AA for either V or W .

2.4.4 The elusive search for a sufficient augmentation

Next we would like to find a sufficient augmentation in order to construct an ASIS for

sampling from the posterior distribution. The following lemma suggests that this may be

difficult if not impossible.
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Lemma 1. Suppose η is an SA for the DLM such that conditional on φ, η and y are jointly

normally distributed, that isη
y


∣∣∣∣∣∣∣φ ∼ N


 αη
Dm̃

 ,
 Ωη Ω′y,η

Ωy,η Ṽ + W̃ + C̃


 .

Let A = Ω′y,ηΩ
−1
η and Σ = Ṽ + W̃ + C̃ −AΩηA

′. Then A, Σ, and αη are constants with respect

to φ and if A′A is invertible, then

p(φ|η, y) ∝p(y|η, φ)p(η|φ)p(φ) ∝ p(η|φ)p(φ)

∝p(φ)|(A′A)−1A′(Ṽ + W̃ + C̃ − Σ)A(A′A)−1|−1/2

× exp

[
−1

2
(η − αη)′[(A′A)−1A′(Ṽ + W̃ + C̃ − Σ)A(A′A)−1]−1(η − αη)

]
.

A proof of this lemma is in Section 2.B. The posterior density we wish to sample from comes

from equation (2.5) and is similar to p(φ|η, y) except less complicated. So what this lemma

shows is that in order to use an SA in a GIS algorithm, we probably need to obtain draws

from a density that is just as hard to sample from as the posterior density we are already

trying to approximate. This does not mean that the full conditional posterior density of the

parameters given a SA has to be difficult to draw from. Rather it means that if we can draw

from that density we could probably draw from the target posterior — perhaps using the same

technology. This result brings to mind Van Dyk and Meng (2001)’s contention that there is

an art to constructing data augmentation algorithms. Our goal is to find an MCMC algorithm

that has nice convergence and mixing properties and is also easy to implement, and this second

criteria is much more difficult to quantify.

2.5 MCMC strategies for the DLM

This section briefly discusses how to construct various MCMC algorithms for approximating

the posterior distribution of the DLM. We focus on what to do, not why. Derivations of the

relevant full conditional distributions are available in Section 2.C. We occasionally come across

a full conditional density that is difficult to sample from — the details about why this happens

and how to overcome it are in the Sectons 2.G and 2.H.
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2.5.1 Base algorithms

Using any of the DAs introduced in Section 2.4, we can construct several DA algorithms

which we call base algorithms to distinguish them from the alternating and interweaving algo-

rithms we will construct later. We will call the standard DA algorithm (Frühwirth-Schnatter,

1994; Carter and Kohn, 1994) using θ the state sampler. In order to construct this sampler, we

need to draw from two densities — p(θ|V,W, y) and p(V,W |θ, y). In their conditional posterior,

V and W are independent with

V |θ, y ∼ IW

(
ΛV +

T∑
t=1

vtv
′
t, λV + T

)
, W |θ, y ∼ IW

(
ΛW +

T∑
t=1

wtw
′
t, λW + T

)
,

where vt = yt − Ftθt, and wt = θt −Gtθt−1.

The density p(θ|V,W, y) is multivariate normal and any algorithm that obtains a random

draw from it is called a simulation smoother in the literature. The most commonly used

smoother, FFBS, uses the Kalman filter (Frühwirth-Schnatter, 1994; Carter and Kohn, 1994),

but other examples are Koopman (1993) and De Jong and Shephard (1995). The smoothers

introduced in McCausland et al. (2011) and Rue (2001), dubbed “all without a loop” smoothers

by Kastner and Frühwirth-Schnatter (2014) exploit the tridiagonal structure of θ’s precision

matrix in order to speed up the computation of its Cholesky factor. The method of Rue (2001)

computes this Cholesky fact and samples from the density in separate steps, and is called the

Cholesky factor algorithm (CFA). On the other hand McCausland et al. (2011) mixes these

two steps together in a backward sampling structure, so we call it the mixed Cholesky factor

algorithm (MCFA). We use the MCFA for drawing θ and include the details of the algorithm

in the context of the DLM in Section 2.E.

Putting the pieces together, the state sampler is the following DA algorithm:

Algorithm: State. State Sampler

[θ|V (k),W (k)] → [V (k+1),W (k+1)|θ]

where the first step uses the MCFA and the second step is the independent inverse Wishart

draws defined above. As we will show in Section 2.6, the Markov chain constructed using

the state sampler can mix poorly in some regions of the parameter space. For example, in a
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dynamic regression through the origin with stationary regression coefficient, if the variance of

the latent states is too small relative to the variance of the data, mixing will be poor for W

(Frühwirth-Schnatter, 2004).

Next, we can use γ in order to construct a second DA algorithm called the scaled disturbance

sampler. In the smoothing step we need to obtain a draw from p(γ|V,W, y). This density is

also Gaussian but has a more complex precision matrix, so in order to obtain a draw from it we

use the MCFA to draw from p(θ|V,W, y), then transform from θ to γ. The density p(V,W |γ, y)

is rather complicated and does not appear easy to draw from, but it is easy to show that

V |W,γ, y ∼ IW
(

ΛV +
∑T

t=1 vtv
′
t, λV + T

)
where vt = yt − Ftθt and θt is a function of γ and

W . However, it is not easy to draw from p(W |γ, y) so we abandon drawing V and W jointly.

The density p(W |V, γ, y) is simpler and, at least in the local level model, can be sampled from

with tolerable efficiency. As a result Algorithm SD, the scaled disturbance sampler, has three

steps instead of the usual two.

Algorithm: SD. Scaled Disturbance Sampler

[θ|V (k),W (k)] → [V (k+1)|W (k), θ] → [γ|V (k+1),W (k), θ] → [W (k+1)|V (k+1), γ]

The first and second steps are the draws as in Algorithm State while the third step is a

transformation from θ to γ. The last step is the difficult one. When W is a scalar a tolerably

efficient rejection sampling algorithm can be constructed, but in models where W is a matrix

it is not clear whether drawing from p(W |V, γ, y) can be accomplished efficiently. Section 2.G

has more detail as well as an algorithm for drawing from P (W |V, γ, y) in the local level model

when V and W are scalars.

The DA algorithm based on the scaled errors is called the scaled error sampler (Algorithm

SE) and is similar to the scaled disturbance sampler with a couple of key differences. First,

the simulation smoothing step in the scaled error sampler can be accomplished directly with

the MCFA because the precision matrix of the conditional posterior of ψ retains the necessary

tridiagonal structure. Second, the full conditional distribution of W is the familiar inverse

Wishart density and the full conditional of V is the complicated density. The density of

V |W,ψ, y is in the same class as that of W |V, γ, y. In fact there is a strong symmetry here —

the joint conditional posterior of (V,W ) given γ is from the same family of densities as that
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of (W,V ) given ψ so that V and W essentially switch places when we condition on the scaled

errors instead of the scaled disturbances.

Algorithm: SE. Scaled Error Sampler

[ψ|V (k),W (k)] → [V (k+1)|W (k), ψ] → [W (k+1)|V (k+1), ψ]

The first step uses the MCFA directly for ψ while the third step is the same inverse Wishart

draw for W as in Algorithm State. The second step contains the difficult draw.

In addition, we can construct DA algorithms based on the wrongly-scaled disturbances and

errors – the wrongly-scaled disturbance sampler and the wrongly-scaled error sampler. In Section

2.6 we show that these samplers perform poorly, so the construction of these algorithms is left

to Section 2.C, though the wrongly-scaled DAs will ultimately be helpful in the construction

of certain interweaving algorithms in Section 2.5.4.

2.5.2 Alternating algorithms

Using the full conditional distributions defined in Section 2.5.1, we can construct several

alternating algorithms based on any two of the DA algorithms. The algorithms have the form

of Algorithm Alt on page 9. For example, the State-SD alternating sampler which alternates

between the states and the scaled disturbances, obtains the k + 1’st iteration of (V,W ) from

the k’th as follows:

[θ|V (k),W (k)]→ [V (k+0.5),W (k+0.5)|θ]→

[γ|V (k+0.5),W (k+0.5)]→ [V (k+1)|W (k+0.5), γ]→ [W (k+1)|V (k+1), γ].

The first line is an iteration of the state sampler while the second line is an iteration of the scaled

disturbance sampler. No work is necessary to link up the two iterations — we simply plug in

the values of V and W obtained from the state sampler iteration into the draw of γ from step

one of the scaled disturbance sampler iteration. Each other alternating algorithm is analogous

and can be constructed without complication. The order in which the base algorithms are

used within an alternating algorithm could in principle affect the convergence properties of the

algorithm, but typically is not important.
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The naming convention we use for these algorithms is to list each DA in the order in

which they appear in the alternating sampler, separated by hyphens. We shorten the scaled

disturbances to “SD”, the scaled errors to “SE”, and the wrongly-scaled version of each to

“WSD” and “WSE” respectively. So for example, the alternating sampler which alternates

between the scaled disturbances and the wrongly-scaled disturbances, in that order, we call

SD-WSD Alt.

2.5.3 GIS algorithms

We can use the various DAs of Section 2.4 to construct interweaving algorithms as well.

We will start with Algorithm eGIS on page 9. Given the full conditional distributions listed

in Section 2.5.1, the only additional ingredients we need are the definitions of the various

available DAs in order to perform the one-to-one transformations from any one DA to another.

For example, in the State-SD GIS sampler we obtain (V (k+1),W (k+1)) from (V (k),W (k)) as

follows:

[θ|V (k),W (k)]→ [W (k+0.5), V (k+0.5)|θ]→

[γ|V (k+0.5),W (k+0.5), θ]→ [V (k+1)|W (k+0.5), γ]→ [W (k+1)|V (k+1), γ].

In the first step of the second line we transform θ to γ by means of the defining equations for γ:

γ0 = θ0 and γt = L−1
W (θt−Gtθt−1) for t = 1, 2, · · · , T where LW is the Cholesky decomposition

of W .

There are often some small improvements that can be made simply by thinking clearly

about what the GIS algorithm is doing. For example in the above version of the State-SD GIS

sampler, the draw of V in step two of line one and the draw of V in step two of line two are

redundant — they come from the same distribution and only the last one is ever used in later

steps. The resulting State-SD GIS sampler is as follows:

Algorithm: State-SD GIS. State-Scaled Disturbance GIS Sampler

[θ|V (k),W (k)] → [V (k+1),W (k+0.5)|θ] → [γ|V (k+1),W (k+0.5), θ] → [W (k+1)|V (k+1), γ].

The first two steps are both steps of Algorithm State, the third step simply transforms from θ

to γ, and the final step is a the difficult draw from Algorithm SD.



www.manaraa.com

20

The naming convention for GIS algorithms is similar to that of alternating algorithms —

DAs appear in the name in the order that they appear in the algorithm, separated by hyphens,

e.g. a GIS algorithm based on the states, scaled disturbances, and scaled errors in that order

would be called the State-SD-SE GIS sampler. There is no additional difficulty encountered

by using a GIS with greater than two DAs and like alternating algorithms, the performance

of GIS algorithms may depend on the order in which the DAs are used, but in our experience

this tends to make no difference, which is consistent with what Yu and Meng (2011) report.

2.5.4 CIS algorithms

Next we consider CIS algorithms which have the form of Algorithm CIS on page 10. The

advantage of using CIS is that it is sometimes possible to find an AA-SA pair of DAs for each

part of the parameter vector even when no such pair of DAs exist for the entire vector. From

Section 2.4, we know that the scaled disturbances and the wrongly-scaled disturbances form

an AA-SA pair for W |V while the scaled errors and the wrongly-scaled errors form an AA-

SA pair for V |W . A CIS sampler based on these AA-SA pairs obtains (V (k+1),W (k+1)) from

(V (k),W (k)) as follows:

[ψ|V (k),W (k)]→ [V (k+0.5)|W (k), ψ]→ [ψ̃|V (k+0.5),W (k), ψ]→ [V (k+1)|W (k), ψ̃]→

[γ̃|V (k+1),W (k), ψ̃]→ [W (k+0.5)|V (k+1), γ̃]→ [γ|V (k+1),W (k+0.5), γ̃]→ [W (k+1)|V (k+1), γ].

The first line is essentially a Gibbs step for drawing V that interweaves between ψ and ψ̃

while the second line is essentially a Gibbs step for drawing W that interweaves between γ

and γ̃. In the second line we use the SA before the AA in order to minimize the number of

transformations we have to make in every iteration.

Notice that each time one of the wrongly-scaled DAs appears in the CIS sampler, it would

make no difference if the states were used instead because p(V |W, ψ̃, y) = p(V |W, θ, y) and

p(W |V, γ̃, y) = p(W |V, θ, y), despite the fact that the states are not an SA for V |W . Using this

we obtain a slightly different version of the CIS sampler in Algorithm CIS:

Algorithm: CIS. Componentwise Interweaving Sampler

[ψ|V (k),W (k)] → [V (k+0.5)|W (k), ψ] → [ψ|V (k+0.5),W (k), θ] → [V (k+1)|W (k), θ] →

[W (k+0.5)|V (k+1), θ] → [γ|V (k+1),W (k+0.5), θ] → [W (k+1)|V (k+1), γ].
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We show in Section 2.I that this algorithm is equivalent to SD-SE GIS in a certain sense so

that we expect the mixing and convergence properties of the two algorithms to be very similar,

and we confirm this in the local level model in Section 2.6. So ease of implementation and

computational cost per iteration are the only real considerations involved in choosing between

the two algorithms.

In our original definition of the CIS sampler for the DLM we used the scaled disturbances

as the AA for W and the scaled errors and the AA for V . We could have reversed this or

used the same AA for both V and W since both the scaled errors and scaled disturbances are

AAs for (V,W ), or we can have used θ as the AA for V . In each of these cases, the resulting

algorithm would reduce to either the state sampler or a partial CIS algorithm, also introduced

by Yu and Meng (2011). Section 2.J discusses partial CIS algorithms in general and in the

DLM. In the next section we will characterize the efficiency of the various available samplers

in the local level model, both in terms of computational cost and in terms of the mixing and

convergence of the Markov chain.

2.6 Application: The local level model

2.6.1 The local level model and its DAs

The local level model (LLM) is a DLM with univariate data yt for t = 1, 2, · · · , T and a

univariate latent state θt for t = 0, 1, · · · , T . In the general DLM notation, Ft = 1 = Gt = 1

for all t while V and W are scalar. We can write the model as

yt|θ, V,W
ind∼ N(θt, V ), θt|θ0:t−1, V,W ∼ N(θt−1,W )

for t = 1, 2, · · · , T . The priors on (θ0, V,W ) from Section 2.3 become θ0 ∼ N(m0, C0), V ∼

IG(αV , βV ) and W ∼ IG(αW , βW ) with θ0, V and W mutually independent where IG(α, β) is

the inverse gamma distribution with shape parameter α and rate parameter β. Commonly in

this model W is called the signal, V is called the noise, and R = W/V is called the signal-to-

noise ratio.

We can define the various DAs from Section 2.4 in the context of the local level model.

The latent states are simply θ. From the states we obtain the scaled disturbances as γ0 = θ0
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and γt = (θt − θt−1)/
√
W for t = 1, 2, · · · , T . Similarly, the scaled errors are ψ0 = θ0 and

ψt = (yt − θt)/
√
V for t = 1, 2, · · · , T . The wrongly-scaled disturbances are then γ̃0 = θ0 and

γ̃t = (θt− θt−1)/
√
V while the wrongly-scaled errors are ψ̃0 = θ0 with ψ̃t = (yt− θt)/

√
W , both

for t = 1, 2, · · · , T .

Most of the full conditional distributions required to construct each of the MCMC samplers

in Section 2.5 for the LLM follow straightforwardly from the general case and their derivations

can be found in Secton 2.D. For all algorithms, we use the MCFA to draw the DA except in

the case of γ, where we use MCFA to draw θ and then transform to γ. For V and W , their

draws are either an inverse gamma draw or a draw from a difficult full conditional. In Secton

2.D we derive the difficult density in detail and in Secton 2.G we show how to obtain random

draws from it.

2.6.2 Simulation setup

We simulated data from the local level model using a factorial design with V and W each

taking the values 10i/2 where i = −4,−3, . . . , 4 and with T taking the values 10, 100, 1000.

Then for each dataset, we fit the local level model using a variety of the algorithms discussed

in this paper. We used the same rule for constructing priors for each model: θ0 ∼ N(0, 107),

V ∼ IG(5, 4V ∗), and W ∼ IG(5, 4W ∗), mutually independent where (V ∗,W ∗) are the true

values of V and W used to simulate the time series. Note that the prior means are equal to

the true values of V and W , so both the prior and likelihood and thus the posterior roughly

agree about the likely values of V and W . The behavior of each of these samplers depends on

where in the parameter space the posterior distribution puts most of its mass and this prior

allows us to highlight that.

For each dataset and sampler we obtained n = 6500 draws and threw away the first 500.

The chains were started at the true values used to simulate the time series, so we can examine

the behavior of the chains to determine how well they mix but not how quickly they converge.

Define the effective sample proportion for a scalar component of the chain as the effective

sample size (ESS) (Gelman et al., 2013) of the component divided by the actual sample size

n (ESP = ESS/n). When ESP = 1 the Markov chain is behaving as if it obtains iid draws
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Table 2.1: Rule of thumb for when each sampler has a high ESP for each variable as a function
of the true signal-to-noise ratio, R∗ = W ∗/V ∗. The bottom panel of the table applies to
both the interweaving and alternating algorithms. Note that as the length of the time series
increases, the farther away from one R∗ has to be for a given sampler to have a high ESP.

State SD SE WSD WSE

V R∗ < 1 R∗ < 1 R∗ > 1 R∗ < 1 R∗ < 1

W R∗ > 1 R∗ < 1 R∗ > 1 R∗ > 1 R∗ > 1

State-SD State-SE SD-SE Triple CIS

V R∗ < 1 R∗ 6≈ 1 R∗ 6≈ 1 R∗ 6≈ 1 R∗ 6≈ 1

W R∗ 6≈ 1 R∗ > 1 R∗ 6≈ 1 R∗ 6≈ 1 R∗ 6≈ 1

from the posterior. It is possible that ESP > 1 if the draws are negatively correlated and

this occasionally happens in our simulations, but we round the ESP down to one for plotting

purposes.

2.6.3 Simulation results

Figure 2.1a contains plots of ESP for V and W in each chain of each base samplers for

T = 100 — the T = 10 and T = 1000 plots are similar and can be found in Section 2.M. Table

2.1 summarizes the results for the base samplers on the top. Let R∗ = V ∗/W ∗ denote the

true signal-to-noise ratio. The State sampler tends to have a low ESP for V and high ESP for

W when R∗ > 1 with the behavior switched when R∗ < 1. The SD sampler has low ESP for

both V and W when R∗ > 1 while the SE sampler has low ESP for both when R∗ < 1 and

in particular for V . We omit the results here, but as T increases, in all samplers the region of

the parameter space with high ESP shrinks and in the low ESP regions, ESP drops closer to

zero. In Section 2.K, we discuss how the pattern of correlations between various quantities in

the posterior distribution determines the pattern of ESPs we see in Figure 2.1.

We fit the LLM to the simulated datasets using several GIS samplers and a CIS sampler

as well. Since the wrongly-scaled samplers behaved similarly to the state sampler and neither

of the underlying DAs were a SA for V and W jointly, we ignored them in the construction of

the GIS samplers. Instead, we constructed the State-SD, State-SE, SD-SE, and Triple (State-

SD-SE) GIS samplers, as well as the CIS sampler. Figure 2.1b has plots of ESP for each of



www.manaraa.com

24

State SD SE WSD WSE

0.01

0.1

1

10

100

0.01

0.1

1

10

100

V
W

0.
01 0.

1 1 10 10
0

0.
01 0.

1 1 10 10
0

0.
01 0.

1 1 10 10
0

0.
01 0.

1 1 10 10
0

0.
01 0.

1 1 10 10
0

V = noise
W

 =
 s

ig
na

l

0.00

0.25

0.50

0.75

1.00
ESP

ESP for V and W in base samplers, T=100

(a)

State − SD State − SE SD − SE Triple CIS

0.01

0.1

1

10

100

0.01

0.1

1

10

100

V
W

0.
01 0.

1 1 10 10
0

0.
01 0.

1 1 10 10
0

0.
01 0.

1 1 10 10
0

0.
01 0.

1 1 10 10
0

0.
01 0.

1 1 10 10
0

V = noise

W
 =

 s
ig

na
l

ESP for V and W GIS and CIS samplers, T=100

(b)

State − SD State − SE SD − SE Triple

0.01

0.1

1

10

100

0.01

0.1

1

10

100

V
W

0.
01 0.

1 1 10 10
0

0.
01 0.

1 1 10 10
0

0.
01 0.

1 1 10 10
0

0.
01 0.

1 1 10 10
0

V = noise

W
 =

 s
ig

na
l

ESP for V and W in Alt samplers, T=100

(c)

Figure 2.1: Effective sample proportion in the posterior sampler for a time series of length
T = 100, for V and W in the each sampler. Figure 2.1a contains ESP for V and W for the base
samplers, Figure 2.1b contains ESP in the GIS and CIS samplers, and Figure 2.1c contains
ESP in the Alt samplers. X and Y axes indicate the true values of V and W respectively for
the simulated data. Note that the signal-to-noise ratio is constant moving up any diagonal. In
the upper left the signal is high, in the lower right the noise is high.

the GIS and CIS algorithms while Figure 2.1c has plots of ESP for each of the Alt algorithms.

Table 2.1 summarizes the results on the bottom.

Essentially, each GIS and Alt algorithm has high ESP when at least one of the base al-

gorithms has high ESP. For example, the State-SD GIS and Alt algorithms have high ESP

for W except for a narrow band where R∗ is near one while ESP is high for W in the state

sampler when R∗ > 1 and in the SD sampler when R∗ < 1. Similarly in the State-SD GIS and

Alt algorithms, mixing for V is identical to the State and SD samplers since neither sampler

improves on the other in any region of the parameter space. Both the State-SD GIS and Alt

algorithms take advantage of the fact that the state and SD DA algorithms make up a “beauty

and the beast” pair for W and thus improves mixing in the marginal chain for W . However,

GIS without an SA-AA pair does not appear to improve on Alt. In Section 2.5.4 we noted

that the CIS and the SD-SE GIS algorithms consist of the same steps, just rearranged. This
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suggests that they should perform similarly and in fact the SD-SE GIS algorithm behaves es-

sentially identically to the CIS and Triple GIS algorithms. We also include simulations with

differing sizes of T using these samplers in Section 2.M. Like with the base samplers, increasing

the length of the time series worsens ESP for both V and W in all samplers and in particular

shrinks the area of the parameter space in which ESP is high.

In Section 2.M we also compare the time required to adequately characterize the posterior

distribution between various algorithms, taking into account both mixing and computational

time. GIS and Alt perform essentially identical in this respect, though there is good reason to

expect GIS to sometimes be more efficient.

2.7 Discussion

In order to explore reparameterizing the DA and apply the interweaving strategies of Yu and

Meng (2011) in dynamic linear models, we start with two DAs, the latent states and the scaled

disturbances, and introduce three new DAs for the DLM: the scaled errors, the wrongly-scaled

disturbances, and the wrongly-scaled errors. Using these DAs, we construct several alternating

algorithms and GIS algorithms and a CIS algorithm. We also find under some assumptions

that any SA for a general class of DLMs yields a full conditional distribution for the model

parameters that is as difficult to sample from as the target posterior. With the available DAs,

we construct each possible DA algorithm, several GIS algorithms and their corresponding Alt

algorithms, and a CIS algorithm for the general DLM and test these algorithms in the local

level model using a simulation study. We find that the true signal-to-noise ratio, R∗ = V ∗/W ∗,

is important for determining when each algorithm performs well, and in addition that there

appears to be no substantive difference in mixing between a GIS algorithm an its corresponding

Alt algorithm. In fact, the three best performing algorithms under most circumstances are the

SD-SE GIS algorithm, the SD-SE Alt algorithm and the CIS algorithm. The only caveat is

that for very long time series the GIS version of an algorithm will start to become relatively

efficient.

The importance of the true signal-to-noise ratio in DLMs to the mixing and convergence

properties of various MCMC algorithms has been anticipated in the literature. In the AR(1)
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plus noise model, Pitt and Shephard (1999) find that the signal-to-noise ratio along with the

AR(1) coefficient determine the convergence rate of a Gibbs sampler. In addition, they find that

the convergence rate decreases as the length of the time series increases, which is consistent with

our empirical findings in the local level model. When Frühwirth-Schnatter (2004) study the

dynamic regression model with a stationary AR(1) process on the regression coefficient, they

use both the states and the scaled disturbances (non-centered disturbances) and several other

DAs motivated by some results for Gibbs samplers in the hierarchical model literature. When

examining the behavior of the resulting DA algorithms, they find that the relative behavior of

the SD sampler and the State sampler depends on a function of the true signal-to-noise ratio

that also depends on the true value of the autocorrelation parameter and the distribution of the

covariate. In addition none of the other DA algorithms they consider are more efficient than

both the state sampler and the SD sampler at the same time. Given this previous work, it is

likely that in the general DLM the signal-to-noise ratio will in some way determine how well each

algorithm performs even if we do not know the precise manner in which it affects mixing and

convergence behavior. This is probably consequence of the relevance of the Bayesian fraction

of missing information and the related EM fraction of missing information to the performance

of the DA and EM algorithms (see Van Dyk and Meng (2001) for a good explication of both

concepts).

A major computational bottleneck in most of our algorithms occurs when we have to draw

from p(W |V, γ, y), p(V |W,ψ, y), p(V |W, γ̃, y) or p(W |V, ψ̃, y). The densities p(W |V, γ, y) and

p(V |W,ψ, y) have the form

p(x) ∝ x−α−1 exp
[
−ax+ b

√
x− c/x

]
,

while the densities p(W |V, ψ̃, y) and p(V |W, γ̃, y) have the form

p(x) ∝ x−α−1 exp
[
−ax+ b/

√
x− c/x

]
where α, a, c > 0 and b ∈ <. When b = 0 we have a special case of the generalized inverse

Gaussian (GIG) distribution, so perhaps the methods used to speed up draws from the GIG

can be used here (Jørgensen, 1982; Dagpunar, 1989; Devroye, 2012). On the other hand, it

might be worth putting effort into drawing V and W jointly. Using the scaled disturbances,
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the conditional distribution of V given W is inverse gamma in the LLM and inverse Wishart in

the general DLM, so it is easy to derive the marginal density p(W |γ, y) up to a proportionality

constant. In our LLM example, this density turns out to be very difficult to sample from

and in particular, it is not easy to come up with a generally good approximation for rejection

sampling or for a Metropolis step. The problem could be solved by a more judicious choice of

priors — we chose inverse Wishart priors for V and W partially because they are standard and

partially because their conditional conjugacy with the states is computationally convenient,

but outside of the state sampler there may be a more convenient prior. In addition, there

are well known inferential problems with the inverse Wishart prior in the hierarchical model

literature, e.g. Gelman (2006) and Alvarez-Castro et al. (2014), though it is unclear whether

this transfers over to DLMs or more generally any time series model. An alternative is to use

the conditionally conjugate prior conditional on the scaled disturbances, or whichever DA we

prefer. In the LLM, the conditionally conjugate prior for
√
W using the scaled disturbances as

the DA is a Gaussian distribution — strictly speaking this prior is on ±
√
W . If we use this

prior for ±
√
V as well, the V step in the scaled disturbance sampler becomes a draw from the

generalized inverse Gaussian distribution. This prior has been used by Frühwirth-Schnatter and

Wagner (2011) and Frühwirth-Schnatter and Tüchler (2008) to speed up computation while

using the scaled disturbances in hierarchical models and by Frühwirth-Schnatter and Wagner

(2010) for time series models with a DA similar to the scaled disturbances. We omit the results

here, but using this prior on both variances does not alter our mixing results for any of the

MCMC samplers. There is a trade-off in computation time to consider — for example when

using the scaled disturbances, the draw of W |V, γ, y is sped up by using the Gaussian prior

on ±
√
W since it becomes a Gaussian draw while the V |W,γ, y is slower since it becomes a

generalized inverse Gaussian draw instead of an inverse gamma. The gains outweigh the costs,

at least in the local level model.

In the general DLM, however, it is unclear whether this will hold because of the additional

complications stemming from V and W being matrices. The conditionally conjugate prior for

W given γ is a normal distribution on±LW , or in the case of V given ψ, a normal distribution on

± LV . But the full conditional for the other covariance matrix becomes a matrix analogue of the
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generalized inverse Gaussian distribution, which appears difficult to sample from. So no matter

which conditionally conjugate prior is used under the scaled errors or scaled disturbances, one

of V or W ’s full conditionals will be intractable. This is not a problem for the DA algorithms

necessarily – you have the freedom to use the inverse Wishart prior for V and the normal

prior for ±LW in the scaled disturbance sampler, for example. But in any interweaving or

alternating algorithm each covariance matrix needs to be drawn from two full conditionals –

one given each of the DAs used in the algorithm, yielding at least one intractable full conditional.

A Metropolis step is probably a tolerable solution to the problem, though the details of how

to best accomplish this will likely have to be determined on a case by case basis.
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APPENDICES

2.A MARGINAL MODEL OF THE DLM

The class of DLMs we consider is

yt|θ, V,W
ind∼Nk(Ftθt, V ) θt|θ0:t−1, V,W ∼Np(Gtθt−1,W ) (2.4)

for t = 1, 2, · · ·T where V and W are unknown covariance matrices. Define vt = yt − Ftθt and

wt = θt −Gtθt−1. Then we can rewrite the model by recursive substitution:

yt = vt + Ft (wt +Gtwt−1 +GtGt−1wt−2 + ...+GtGt−1 · · ·G2w1 +GtGt−1 · · ·G1θ0) .

Then conditional on φ = (V,W ) each yt is a linear combination of normal random variables.

After marginalizing out θ, y = (y′1, y
′
2, . . . , y

′
T ) has a normal distribution such that E[yt|φ] =

FtHtm0,

Var[yt|φ] = V + Ft(KtWK ′t +HtC0H
′
t)F
′
t , and Cov[ys, yt|φ] = Fs(KsWK ′t +HsC0H

′
t)F
′
t ,

where Ht = GtGt−1 · · ·G1 and Kt = Ip + Gt + GtGt−1 + · · · + GtGt−1 · · ·G2. Next define

Dt = FtGtGt−1 · · ·G1. Then let Ṽ = IT⊗V and D be block diagonal with elements D1, . . . , DT ,

W̃Tk×Tk =

[
K ′1F

′
1 K ′2F

′
2 · · ·K ′TF ′T

]′
W

[
K ′1F

′
1 K ′2F

′
2 · · ·K ′TF ′T

]
,

C̃Tk×Tk =

[
H ′1F

′
1 H ′2F

′
2 · · ·H ′TF ′T

]′
C0

[
H ′1F

′
1 H ′2F

′
2 · · ·H ′TF ′T

]
,

and m̃Tp×1 = (m′0,m
′
0, · · ·m′0)′. Now we have the data model for y without any data augmen-

tation:

y|V,W ind∼ NTk(Dm̃, Ṽ + W̃ + C̃). (2.5)
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2.B PROOF OF LEMMA 1

First the normality assumption implies

y|η, φ ∼ N(Dm̃+ Ω′y,ηΩ
−1
η (η − αη), Ṽ + W̃ + C̃ − Ω′y,ηΩ

−1
η Ωy,η)

η|φ ∼ N(αη,Ωη).

Now for η to be a sufficient augmentation we need Dm̃+ Ω′y,ηΩ
−1
η (η − αη) and Ṽ + W̃ + C̃ −

Ω′y,ηΩ
−1
η Ωy,η to be functionally independent of φ. This requires that

Dm̃− Ω′y,ηΩ
−1
η αη + Ω′y,ηΩ

−1
η η = b+Aη

where A = Ω′y,ηΩ
−1
η and b = Dm̃−Aαη must both be free of φ. As a result Aαη is also free of

φ and thus so is αη.

Then using the second equation, we now require Σ free of φ where Σ = Ṽ +W̃ +C̃−AΩηA
′.

This ensures that Ωη,y is not the zero matrix since Ṽ + W̃ + C̃ is not free of φ. Rearranging

we have AΩηA
′ = Ṽ + W̃ + C̃ − Σ. Consider η̃ = Aη, which is also a sufficient augmentation

since it is just a linear transformation by a constant matrix. Then we have

y|η̃, φ ∼ N(b+Aη,Σ)

η̃|φ ∼ N(Aαη, AΩηA
′)

in other words

y|η̃, φ ∼ N(b+ η̃,Σ)

η̃|φ ∼ N(Aαη, Ṽ + W̃ + C̃ − Σ).

Thus the posterior density of φ given η̃ can be written as

p(φ|η̃, y) ∝ p(y|η̃, φ)p(η̃|φ)p(φ) ∝ p(η̃|φ)p(φ)

∝ p(φ)|Ṽ + W̃ + C̃ − Σ|−1/2 exp

[
−1

2
(η̃ −Aαη)′(Ṽ + W̃ + C̃ − Σ)−1(η̃ −Aαη)

]
.

Now given that A′A is invertible and the properties of multivariate normal distributions, the

density of p(φ|η, y) follows from η = (A′A)−1A′η̃.
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2.C CONSTRUCTION OF THE WRONGLY-SCALED DA ALGORITHMS

The wrongly-scaled DA algorithms are close analogues to their correctly scaled cousins.

Starting with the wrongly-scaled disturbance sampler (Algorithm WSD), the simulation smooth-

ing step to draw from p(γ̃|V,W, y) is similar to that of the scaled disturbance sampler — the

density is Gaussian, but the precision matrix is not tridiagonal, so we draw θ using the MCFA

and transform to obtain a draw of γ̃. The density of V,W |γ̃, y is too complicated to draw from

directly, as was the case when we used the scaled disturbances. In this case, the full conditional

distribution of W is the same as its distribution when we condition on the states while the

density of V |γ̃, y is once again difficult to draw from. The density of V |W, γ̃, y is easier to work

with, at least in the local level model example in Section 6.

Algorithm: WSD. Wrongly-Scaled Disturbance Sampler

1. Use MCFA to draw θ ∼ p(θ|V,W, y).

2. Transform θ to γ̃.

3. Draw V ∼ p(V |W, γ̃, y).

4. Draw W ∼ IW
(

ΛW +
∑T

t=1wtw
′
t, λW + T

)
.

Now the third step is difficult and we demonstrate how to accomplish it in the local level model

in Section 2.F. We could switch the order in which V and W are drawn in this algorithm

so that we can draw W before transforming θ to γ̃. This would make each iteration slightly

cheaper and probably would not affect the mixing and convergence properties of the algorithm,

however we are more interested in comparing the mixing and convergence properties of the

various samplers, so we always sample V before W when we cannot sample them jointly.

The wrongly-scaled error sampler (Algorithm WSE) is closely related to both the wrongly-

scaled disturbance sampler and the scaled error sampler. The density of ψ̃|V,W, y is Gaussian

with a tridiagonal precision matrix, so the simulation smoothing step can be accomplished

using the MCFA. The density p(V,W |ψ̃, y) is from the same class as p(W,V |γ̃, y) so that V

and W essentially switch places when we condition on ψ̃ instead of γ̃. In particular, V |W, ψ̃, y
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has an inverse Wishart density and the density of W |V, ψ̃, y is from the same class as that of

V |W, γ̃, y.

Algorithm: WSE. Wrongly-Scaled Error Sampler

1. Use MCFA to draw ψ̃ ∼ p(θ|V,W, y).

2. Draw V ∼ IW
(

ΛV +
∑T

t=1 vtv
′
t, λV + T

)
.

3. Draw W ∼ p(W |V, ψ̃, y)

The constructions of Algorithms WSD and WSE in the local level model example from

Section 6 require p(W |V, ψ̃, y) and p(V |W, γ̃, y) respectively. Both densities have the form

p(x) ∝ x−α−1 exp [−ax+ b/
√
x− c/x], which is closely related to the difficult density from the

correctly scaled samplers. For p(V |W, γ̃, y) we show in Section 2.C that α = αV , a = aγ̃ ≡
1

2W

∑T
t=1 γ̃

2
t , b = bγ̃ ≡

∑T
t=1(yt − γ̃0)

∑t
s=1 γ̃s, and c = cγ̃ ≡ βV + 1

2

∑T
t=1(yt − γ̃0)2 while

for p(W |V, ψ̃, y) we show that α = αW , a = aψ̃ ≡
1

2V

∑T
t=1 ψ̃

2
t , b = bψ̃ ≡

∑T
t=1 LỹtLψ̃t, and

c = cψ̃ ≡ βW + 1
2

∑T
t=1 Lỹ2

t . This density is harder to sample from because adaptive rejection

sampling does not work very well, so we construct a rejection sampler on the log scale using a

t approximation in Section 2.G.

2.D FULL CONDITIONAL DISTRIBUTIONS IN THE GENERAL DLM FOR

VARIOUS DAS

The class of DLMs we consider is defined as follows:

yt = Ftθt + vt vt
ind∼ Nk(0, V ) (observation equation) (2.6)

θt = Gtθt−1 + wt wt
ind∼ Np(0,W ) (system equation) (2.7)
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for t = 1, 2, · · ·T with the priors θ0 ∼ Np(m0, C0), V ∼ IW (ΛV , λV ) and W ∼ IW (ΛW , λW )

with (θ0, V,W ) mutually independent. Then the full joint distribution of (V,W, θ, y) is

p(V,W, θ, y) ∝ exp

[
−1

2
(θ0 −m0)′C−1

0 (θ0 −m0)

]
× |V |−(λV +k+T+2)/2 exp

[
−1

2
tr
(
ΛV V

−1
)]

exp

[
−1

2

T∑
t=1

(yt − Ftθt)′V −1(yt − Ftθt)

]

× |W |−(λW+p+T+2)/2 exp

[
−1

2
tr
(
ΛWW

−1
)]

exp

[
−1

2

T∑
t=1

(θt −Gtθt−1)′W−1(θt −Gtθt−1)

]
(2.8)

where tr(.) is the matrix trace operator.

In the following subsections, we provide derivations of the full conditional distributions for

when using states, scaled disturbances or scaled errors as the data augmentation.

2.D.1 States

With the usual DA, the full conditional distributions can be derived from equation (2.8).

First, the full conditional distribution of θ is as follows:

p(θ|V,W, y) ∝ p(V,W, θ, y) ∝ exp

[
−1

2
(θ0 −m0)′C−1

0 (θ0 −m0)

]
× exp

[
−1

2

T∑
t=1

(yt − Ftθt)′V −1(yt − Ftθt)

]
exp

[
−1

2

T∑
t=1

(θt −Gtθt−1)′W−1(θt −Gtθt−1)

]
.

It turns out that this density is Gaussian. In Section 2.E, we show how to use the mixed

Cholesky factorization algorithm (MCFA) in order to efficiently determine and draw from this

distribution.

The full conditional of (V,W ) is:

p(V,W |θ, y) ∝ p(V,W, θ, y) ∝ |V |−(λV +k+T+2)/2 exp

[
−1

2
tr
(
ΛV V

−1
)]

exp

[
−1

2

T∑
t=1

(yt − Ftθt)′V −1(yt − Ftθt)

]

× |W |−(λW+p+T+2)/2 exp

[
−1

2
tr
(
ΛWW

−1
)]

exp

[
−1

2

T∑
t=1

(θt −Gtθt−1)′W−1(θt −Gtθt−1)

]

∝ |V |−(λV +k+T+2)/2 exp

[
−1

2
tr

((
ΛV +

T∑
t=1

(yt − Ftθt)(yt − Ftθt)′
)
V −1

)]

× |W |−(λW+p+T+2)/2 exp

[
−1

2
tr

((
ΛW +

T∑
t=1

(θt −Gtθt−1)(θt −Gtθt−1)′

)
W−1

)]
.
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In other words, V and W are conditionally independent given y and θ with

V |θ, y ∼ IW

(
ΛV +

T∑
t=1

vtv
′
t, λV + T

)
, W |θ, y ∼ IW

(
ΛW +

T∑
t=1

wtw
′
t, λW + T

)

where vt = yt − Ftθt and wt = θt −Gtθt−1.

In the local level model, the priors on V and W become V ∼ IG(αV , βV ) and W ∼

IG(αW , βW ). The full conditionals then become

V |θ, y ∼ IG

(
αV + T/2, βV +

T∑
t=1

(yt − θt)2/2

)
, W |θ, y ∼ IG

(
αW + T/2, βW +

T∑
t=1

(θt − θt−1)2/2

)
.

2.D.2 Scaled disturbances

Let LW denote the Cholesky decomposition of W , i.e. the lower triangle matrix LW such

that LWL
′
W = W . Then the scaled disturbances are γ = γ0:T = (γ′0, γ

′
1, · · · , γ′T )′ defined by

γ0 = θ0 and γt = L−1
W (θt − Gtθt−1) for t = 1, 2, · · · , T . The reverse transformation is defined

recursively by θ0 = γ0 and θt = LWγt + Gtθt−1 for t = 1, 2, · · · , T . Then the Jacobian is

block lower triangular with the identity matrix and T copies of LW along the diagonal blocks,

so |J | = |LW |T = |W |T/2. From equation (2.8) we can write the full joint distribution of

(V,W, γ, y) as

p(V,W, γ, y) ∝ exp

[
−1

2
(γ0 −m0)′C−1

0 (γ0 −m0)

]
exp

[
−1

2
γ′tγt

]
× |W |−(λW+p+2)/2|V |−(λV +k+T+2)/2 exp

[
−1

2
tr
(
ΛWW

−1
)]

× exp

[
−1

2

(
tr
(
ΛV V

−1
)

+

T∑
t=1

[yt − Ftθt(γ,W )]′ V −1 [yt − Ftθt(γ,W )]

)]
. (2.9)

where θt(γ,W ) denotes the recursive back transformation defined by the scaled disturbances.

The full conditional distribution of γ is then

p(γ|V,W, y) ∝ p(V,W, γ, y) ∝ exp

[
−1

2
(γ0 −m0)′C−1

0 (γ0 −m0)

]
exp

[
−1

2
γ′tγt

]
× exp

[
−1

2

(
T∑
t=1

[yt − Ftθt(γ,W )]′ V −1 [yt − Ftθt(γ,W )]

)]
.

This density is Gaussian, but difficult to draw from. We use the MCFA to draw from θ|V,W, y

instead, then transform from θ to γ using the definition of γ.
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Under this parameterization, the full conditional distribution of (V,W ) is

p(V,W, |γ, y) ∝ p(V,W, γ, y)|W |−(λW+p+2)/2|V |−(λV +k+T+2)/2 exp

[
−1

2
tr
(
ΛWW

−1
)]

× exp

[
−1

2

(
tr
(
ΛV V

−1
)

+

T∑
t=1

[yt − Ftθt(γ,W )]′ V −1 [yt − Ftθt(γ,W )]

)]
.

The back transformation from θ to γ sets θ0 = γ0 and for t = 1, 2, · · · , T

θt = LWγt +Gtθt−1

= LWγt +
t−2∑
s=0

GtGt−1 . . . Gt−sLWγt−s−1 +GtGt−1 . . . G1γ0

=

t−1∑
s=0

G̃s,tLWγt−s + G̃t,tγ0

where G̃s,t = GtGt−1 · · ·Gt−s+1 for s > 0 and G̃0,t = Ip, the p × p identity matrix.. Then we

can rewrite the conditional distribution of (V,W ) as

p(V,W, |γ, y) ∝ p(V,W, γ, y) ∝ |W |−(λW+p+2)/2|V |−(λV +k+T+2)/2 exp

[
−1

2
tr
(
ΛWW

−1
)]

exp

[
−1

2

(
tr
(
ΛV V

−1
))]

× exp

−1

2

 T∑
t=1

[
yt − Ft

t∑
s=0

G̃s,tLWγt−s − FtG̃t,tγ0

]′
V −1

[
yt − Ft

t−1∑
s=0

G̃s,tLWγt−s − FtG̃t,tγ0

] .
This density is fairly complicated, so we resort to the full conditionals of V and W separately.

The full conditional of V is familiar:

p(V |W,γ, y) ∝ p(V,W |γ, y) ∝ |V |−(λV +k+T+2)/2 × exp

[
−1

2

(
tr

[
ΛV +

T∑
t=1

vtv
′
t

]
V −1

)]
where vt = yt − Ft

∑t
s=0 G̃s,tLWγt−s − FtG̃t,tγ0 = yt − Ftθt. This implies that

V |W,γ, y ∼ IW

(
ΛV +

T∑
t=1

vtv
′
t, λV + T

)
which is the same distribution as for V |θ, y. In the local level model this reduces to

V |W,γ, y ∼ IG

(
αV + T/2, βV +

T∑
t=1

(yt − θt(γ))2/2

)
which is again the same density if we conditioned on θ.

The full conditional density of W is more complicated:

p(W |V, γ, y) ∝ p(V,W, γ, y) ∝ |W |−(λW+p+2)/2 exp

[
−1

2
tr
(
ΛWW

−1
)]

× exp

−1

2

 T∑
t=1

[
yt − Ft

t∑
s=0

G̃s,tLWγt−s − FtG̃t,tγ0

]′
V −1

[
yt − Ft

t−1∑
s=0

G̃s,tLWγt−s − FtG̃t,tγ0

] .
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In the local level model, the density is even simpler:

p(W |V, γ, y) ∝W−αW−1 exp

[
− 1

W
βW

]
exp

−1

2

 T∑
t=1

[
yt −

t∑
s=0

γt−s
√
W

]′
V −1

[
yt −

t−1∑
s=0

γt−s
√
W

]
∝W−αW−1 exp

[
−aγW + bγ

√
W − βW

W

]
.

where aγ =
∑T

t=1(
∑t

s=1 γj)
2/2V and bγ =

∑T
t=1(yt− γ0)(

∑t
s=1 γj)/V . In Section 2.G we show

how to efficiently obtain a random draw from this density.

2.D.3 Scaled errors

Let LV denote the Cholesky decomposition of V , that is LV L
′
V = V , then we can define the

scaled errors as ψt = L−1
V (yt−Ftθt) for t = 1, 2, · · · , T and ψ0 = θ0. Here we assume that k = p

and that Ft is invertible for all t. Then the back transformation is θt = F−1
t (yt−LV ψt) for t =

1, 2, · · · , T and θ0 = ψ0. The Jacobian of this transformation is block diagonal with a single copy

of the identity matrix along with the F−1
t LV ’s along the diagonal, so |J | = (

∏T
t=1 |Ft|−1)|V |T/2.

Then from equation (2.8) we can write the joint distribution of (V,W,ψ, y) as

p(V,W,ψ, y) ∝ exp

[
−1

2
(ψ0 −m0)′C−1

0 (ψ0 −m0)

]
exp

[
−1

2

T∑
t=1

ψ′tψt

]

× |V |−(λV +p+2)/2 exp

[
−1

2
tr
(
ΛV V

−1
)]
× |W |−(λW+p+T+2)/2

exp

[
−1

2

(
tr
(
ΛWW

−1
)

+
T∑
t=1

(yt − µt)′(FtWF ′t)
−1(yt − µt)

)]
(2.10)

where we define µ1 = LV ψ1 + F1G1ψ0 and for t = 2, 3, · · · , T , µt = LV ψt + FtGtF
−1
t−1(yt−1 −

LV ψt−1). The |Ft|−1’s have been absorbed into the normalizing constant, but if they depended

on some unknown parameter then we could not do this and as a result would have to take them

into account in the Gibbs step or steps for the model parameters.

The full conditional distribution of ψ is

p(V,W,ψ, y) ∝ exp

[
−1

2
(ψ0 −m0)′C−1

0 (ψ0 −m0)

]
exp

[
−1

2

T∑
t=1

ψ′tψt

]

exp

[
−1

2

(
T∑
t=1

(yt − µt)′(FtWF ′t)
−1(yt − µt)

)]
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where note that µt depends on ψ. This density is Gaussian and like with γ, we can use the

MCFA from Section 2.E to draw from the full conditional of θ and then transform from θ to ψ.

However it turns out the precision matrix of ψ’s full conditional distribution has the necessary

block tridiagonal structure, so we use the MCFA directly on ψ.

The full conditional distribution of (V,W ) is complicated, like the case of the scaled distur-

bances, so we find the full conditionals of V and W separately instead. The full conditional of

W is

p(W |V, ψ, y) ∝ |W |−(λW+p+T+2)/2 exp

[
−1

2

(
tr

([
ΛW +

T∑
t=1

F−1
t (yt − µt)(yt − µt)′(F−1

t )′

]
W−1

))]
,

in other words

W |V, ψ, y ∼ IW

(
ΛW +

T∑
t=1

wtw
′
t, λW + T

)

where wt = F−1
t (yt − µt) = θt −Gtθt−1. In the local level model, this becomes

W |V, ψ, y ∼ IG

(
αW + T/2, βW +

T∑
t=1

(θt(ψ)− θt−1(ψ))2/2

)
.

The full conditional distribution of V is more complicated:

p(V |W,ψ, y) ∝ p(V,W,ψ, y) ∝ |V |−(λV +p+2)/2 exp

[
−1

2
tr

(
ΛV V

−1 +
T∑
t=1

(yt − µt)′(FtWF ′t)
−1(yt − µt)

)]
with µt a function of V , defined above. In the local level model with an IG(αV , βV ) prior on

V , this density is simpler:

p(V |W,ψ, y) ∝ V −αV −1 exp

[
−βV
V

+
1

W

T∑
t=1

(yt − µt)′(yt − µt)

]

where µ1 =
√
V ψ1 + ψ0 and for t = 2, 3, · · · , T , µt =

√
V (ψt − ψt−1) + yt−1. Thus

p(V |W,ψ, y) ∝ V −αV −1 exp

[
−aψV + bψ

√
V − βV

V

]
where aψ =

∑T
t=1(Lψt)2/2W and bψ =

∑T
t=1(LψtLyt)/W , and we define Lyt = yt − yt−1 for

t = 2, 3, · · · , T , Ly1 = y1 − ψ0, Lψt = ψt − ψt−1 for t = 2, 3, ..., T and Lψ1 = ψ1 − 0. In other

words, the form of p(V |W,ψ, y) is the same as p(W |V, γ, y). The general form of these two

densities is p(x) ∝ x−α−1 exp [−ax+ b
√
x− c/x]. In Section 2.G we show how to efficiently

sample from this distribution.
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2.D.4 The wrongly-scaled disturbances

The wrongly-scaled disturbances are defined as γ̃ = γ̃0:T = (γ̃′0, γ̃
′
1, · · · , γ̃′T )′. The wrongly-

scaled disturbances are related to the scaled disturbances by γ̃t = L−1
V LWγt for t = 1, 2, · · · , T

and γ̃0 = γ0. The reverse transformation is γt = L−1
W LV γ̃t and the Jacobian is block diagonal

with a copy of the identity matrix and T copies of L−1
W LV along the diagonal. Thus |J | =

|LW |−T |LV |T = |W |−T/2|V |T/2. Then from equation (2.9) we can write the joint distribution

of (V,W, γ̃, y) as

p(V,W, γ̃, y) ∝ exp

[
−1

2
(γ̃0 −m0)′C−1

0 (γ̃0 −m0)

]
|V |−(λV +p+2)/2 exp

[
−1

2
tr
(
ΛV V

−1
)]

× exp

[
−1

2

T∑
t=1

(yt − Ftθt(γ̃, LV ))′ V −1 (yt − Ftθt(γ̃, LV ))

]

× |W |−(λW+p+T+2)/2 exp

[
−1

2
tr
(
ΛWW

−1
)]

exp

[
−1

2

T∑
t=1

γ̃′t(L
−1
V W (L−1

V )′)−1γ̃t

]
(2.11)

where θt(γ̃, LV ) denotes the transformation from γ̃ to θ defined by the wrongly-scaled distur-

bances.

Now from equation (2.11), we can write the full conditional density of γ̃ as

p(γ̃|V,W, y) ∝ exp

[
−1

2
(γ̃0 −m0)′C−1

0 (γ̃0 −m0)

]
exp

[
−1

2

T∑
t=1

γ̃′t(L
−1
V W (L−1

V )′)−1γ̃t

]

× exp

[
−1

2

T∑
t=1

(yt − Ftθt(γ̃, LV ))′ V −1 (yt − Ftθt(γ̃, LV ))

]
.

This density is Gaussian but difficult to draw from, so we use the MCFA to draw θ|V,W, y

instead, then transform from θ to γ̃.

Then full conditional density of (V,W ) is complicated, but their separate full conditionals

are easier to work with. The full conditional density of W is

p(W |V, γ̃, y) ∝|W |−(λW+p+T+2)/2 exp

[
−1

2
tr

([
ΛW +

T∑
t=1

LV γ̃tγ̃
′
tL
′
V

]
W−1

)]
,

i.e.

W |V, γ̃, y ∼ IW

(
ΛW +

T∑
t=1

wtw
′
t, λW + T

)
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where wt = LV γ̃t = θt −Gtθt−1. In the local level model, this density becomes

W |V, γ̃, y ∼ IG

(
αW + T/2, βW +

T∑
t=1

(θt(γ̃)− θt−1(γ̃))2/2

)
.

The full conditional density of V is more complicated, from equation (2.11):

p(V |W, γ̃, y) ∝|V |−(λV +p+2)/2 exp

[
−1

2
tr
(
ΛV V

−1
)]

exp

[
−1

2

T∑
t=1

γ̃′t(L
−1
V W (L−1

V )′)−1γ̃t

]

× exp

[
−1

2

T∑
t=1

(yt − Ftθt(γ̃, LV ))′ V −1 (yt − Ftθt(γ̃, LV ))

]
.

In the local level model with an IG(αV , βV ) prior on V , this density becomes simpler. Since

in that case θt =
√
V
∑t

s=1 γ̃s + γ̃0, we have

p(V |W, γ̃, y) ∝ V −αV −1 exp
[
−aγ̃V + bγ̃/

√
V − cγ̃/V

]
where aγ̃ = 1

2W

∑T
t=1 γ̃

2
t , bγ̃ =

∑T
t=1(yt − γ̃0)

∑t
s=1 γ̃s, and cγ̃ = βV + 1

2

∑T
t=1(yt − γ̃0)2. We

show in Section 2.H how to efficiently obtain a random draw from this density.

2.D.5 The wrongly-scaled errors

The wrongly-scaled errors are denoted by ψ̃ = ψ̃0:T = (ψ̃′0, ψ̃
′
1, · · · , ψ̃′T )′. They are related

to the scaled errors by ψ̃t = L−1
W LV ψt for t = 1, 2, · · · , T and ψ̃0 = ψ0. Then ψt = L−1

V LW ψ̃t

and the Jacobian is block diagonal with a copy of the identical matrix and T copies of L−1
V LW

along the diagonal. So |J | = |V |−T/2|W |T/2 and from equation (2.10) we can write the joint

distribution of (V,W, ψ̃, y) as

p(V,W, ψ̃, y) ∝ exp

[
−1

2
(ψ̃0 −m0)′C−1

0 (ψ̃0 −m0)

]
× |V |−(λV +p+T+2)/2 exp

[
−1

2
tr
(
ΛV V

−1
)]

exp

[
−1

2

T∑
t=1

ψ̃′t(L
−1
W V (L−1

W )′)−1ψ̃t

]

× |W |−(λW+p+2)/2 exp

[
−1

2
tr
(
ΛWW

−1
)]

exp

[
−1

2

T∑
t=1

(yt − µ̃t)′(FtWF ′t)
−1(yt − µ̃t)

]
(2.12)

where we define µ̃1 = LW ψ̃1 − F1G1ψ̃0 and for t = 2, 3, · · · , T µ̃t = LW ψ̃t − FtGtF−1
t−1(yt−1 −

LW ψ̃t−1).
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From equation (2.12) the full conditional distribution of ψ̃ is

p(ψ̃|V,W, y) ∝ exp

[
−1

2
(ψ̃0 −m0)′C−1

0 (ψ̃0 −m0)

]
exp

[
−1

2

T∑
t=1

ψ̃′t(L
−1
W V (L−1

W )′)−1ψ̃t

]

× exp

[
−1

2

T∑
t=1

(yt − µ̃t)′(FtWF ′t)
−1(yt − µ̃t)

]
.

This density is again Gaussian and it can be shown that the precision matrix is tridiagonal,

so the MCFA can be directly applied. The full conditional density of V is the familiar inverse

Wishart:

p(V |W, ψ̃, y) ∝|V |−(λV +p+T+2)/2 exp

[
−1

2
tr
(
ΛV V

−1
)]

exp

[
−1

2

T∑
t=1

ψ̃′t(L
−1
W V (L−1

W )′)−1ψ̃t

]
.

So V |W, ψ̃, y ∼ IW
(

ΛV +
∑T

t=1 vtv
′
t, λV + T

)
where vt = LW ψ̃t = yt − Ftθt. In the local level

model, this becomes

V |W, ψ̃, y ∼ IG

(
αV + T/2, βV +

T∑
t=1

(yt − θt(ψ̃))2/2

)
.

The full conditional density of W is more complicated, but has the same form as the full

conditional density of V given γ̃:

p(W |V, ψ̃, y) ∝|W |−(λW+p+2)/2 exp

[
−1

2

T∑
t=1

ψ̃′t(L
−1
W V (L−1

W )′)−1ψ̃t

]

× exp

[
−1

2
tr
(
ΛWW

−1
)]

exp

[
−1

2

T∑
t=1

(yt − µ̃t)′(FtWF ′t)
−1(yt − µ̃t)

]
.

In the case of the local level model with a IG(αW , βW ) prior on W , this density simplifies to

p(W |V, ψ̃, y) ∝W−αW−1 exp
[
−aψ̃W + bψ̃/

√
W − cψ̃/W

]
where aψ̃ = 1

2V

∑T
t=1 ψ̃

2
t , bψ̃ =

∑T
t=1 LỹtLψ̃t, and cψ̃ = βW + 1

2

∑T
t=1 Lỹ2

t . Here we define

Lyt = yt− yt−1 for t = 2, 3, · · · , T while Ly1 = y1− ψ̃0, and Lψ̃t = ψ̃t− ψ̃t−1 for t = 2, 3, · · · , T

while Lψ̃1 = ψ̃1 − 0. This is the same family of densities as p(V |W, γ̃, y), and in Section 2.H

we show how to efficiently obtain random draws.

2.E MIXED CHOLESKY FACTORIZATION ALGORITHM (MCFA) FOR

SIMULATION SMOOTHING

Traditionally in DLMs, forward filtering, backward sampling (FFBS) is used in order to

draw from the latent states θ0:T . This requires running the Kalman filter in order to deter-
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mine the marginal distribution of θT , then drawing θt|θt+1:T for t = T − 1, T − 2, · · · , 1 Carter

and Kohn (1994); Frühwirth-Schnatter (1994). The mixed Cholesky factorization algorithm

(MCFA) determines the joint distribution of θ0:T and draws from it using a backward sampling

step as in FFBS. The idea comes from Rue (2001), which introduces a Cholesky factorization

algorithm (CFA) for drawing from a Gaussian Markov random field and notes that the con-

ditional distribution of θ0:T given y1:T in a Gaussian linear statespace model is a special case.

The algorithm exploits the fact that the full conditional distribution of θ0:T is Gaussian with a

block tridiagonal precision matrix in order to quickly compute its Cholesky decomposition. Mc-

Causland et al. (2011) improves the idea by implicitly computing this Cholesky decomposition

through a backward sampling strategy, starting with sampling from the marginal distribution

of θT .

Suppose our model is as follows:

yt = Ftθt + vt

θt = Gtθt−1 + wt

with vt
ind∼ N(0, Vt) independent of wt

ind∼ N(0,Wt) for t = 1, 2, · · · , T and θ0 ∼ N(m0, C0). This

is the usual DLM except now we allow for time dependent variances for illustrative purposes.

Then (y1:T , θ0:T ) is joint Gaussian conditional on (V1:T ,W1:T ) (in this section, everything is

conditional on V1:T and W1:T , so we will not make this conditioning explicit). So we can write

p(θ0:T |y1:T ) as

log p(θ0:T |y1:T ) = −1

2
g(θ0:T , y1:T ) +K

where K is some constant with respect to θ0:T and

g(θ0:T , y1:T ) = θ′0:TΩθ0:T − 2a′θ0:T .

However, we also have

log p(θ0:T |y1:T ) = log p(θ0:T , y1:T )− log p(y1:T ).
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This means that

g(θ0:T , y1:T ) = (θ0 −m0)C−1
0 (θ0 −m0) +K ′

+
T∑
t=1

(yt − Ftθt)′V −1
t (yt − Ftθt)

+
T∑
t=1

(θt −Gtθt−1)′W−1
t (θt −Gtθt−1).

where K ′ is another constant that doesn’t depend on θ0:T .

So now we can identify blocks of Ω with the cross product terms of the θt’s and blocks of

a with the single product terms. Specifically, Ω is a banded diagonal matrix with

Ω =



Ω00 Ω01 0
. . . 0 0

Ω10 Ω11 Ω12
. . . 0 0

0 Ω21 Ω22
. . . 0 0

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0
. . . ΩT−1,T−1 ΩT−1,T

0 0 0
. . . ΩT,T−1 ΩTT


and ω = (ω′0, ω

′
1, · · · , ω′T ) where the Ωst’s and ωt’s defined below:

Ω00 = C−1
0 +G′1W

−1
1 G1

Ωtt = F ′tV
−1
t Ft +W−1

t +G′t+1W
−1
t+1Gt+1 for t = 1, 2, · · ·T − 1

ΩTT = F ′TV
−1
T FT +W−1

T

Ωt,t−1 = −W−1
t Gt for t = 1, 2, · · ·T

Ωt−1,t = −G′tW−1
t = Ω′t,t−1 for t = 1, 2, · · ·T

ω0 = C−1
0 m0

ωt = F ′tV
−1
t yt for t = 1, 2, · · ·T.

Together, Ω and a determine the Gaussian distribution from which θ0:T should be drawn.

Rue (2001) shows how to take advantage of the sparsity of Ω in order to quickly compute its

Cholesky factorization and in order to find the mean vector from ω and this factorization. Mc-

Causland et al. (2011) shows that instead of computing these quantities directly, you can draw



www.manaraa.com

43

θT and θt|θt+1:T iteratively, which ultimately reduces the number of linear algebra operations

which must be performed and typically speeds up the computation despite taking advantage

of essentially the same mathematical technology.

The resulting algorithm requires a couple more intermediate quantities. Let Σ0 = Ω−1
00 ,

Σt = (Ωtt − Ωt,t−1Σt−1Ωt−1,t)
−1 for t = 1, 2, · · · , T , h0 = Σ0ω0, and ht = Σt(ωt − Ωt,t−1ht−1)

for t = 1, 2, · · · , T . Then

θT ∼N(hT ,ΣT )

θt|t+1:T ∼N(ht − ΣtΩt,t+1θt+1,Σt) for t = T − 1, T − 2, · · · , 0.

McCausland et al. (2011) shows how to quickly compute the required linear algebra operations

and finds that this method is often faster than simply doing the Cholesky factorization. This

algorithm can also be applied to drawing the scaled errors, ψ0:T , and the wrongly-scaled errors,

ψ̃0:T .

2.F FURTHER AUGMENTATION FOR NON-INVERTIBLE Ft

Throughout the paper we assumed that Ft is square and invertible for all t which made the

construction of the SE sampler and other samplers that use the scaled errors easier. However,

most DLMs do not have Ft’s which are square, let alone invertible. The samplers we constructed

can still be used in this case with one tweak: an additional DA is required in order to ensure

that Ft is square and invertible for all t. The basic strategy is to add elements to yt or θt or

both until Ft is invertible, then add an additional step to the sampler in order to draw the

new augmentation. A second issue is that often Gt or Ft or both depend on some unknown

parameter which must also be sampled from in the various MCMC samplers. The second case

is easily dealt with simply by adding another sampling step for the unknown parameters in Ft

and Gt. The following example illustrates how to deal with the first case. See Simpson (2014)

for another example.
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Consider the dynamic regression model

yt = αt + xtβt + vt

αt = αt−1 + w1,t

βt = βt−1 + w2,t

for t = 1, 2, · · · , T with v1:T independent of w1:T = (w′1, w
′
2, · · · , w′T )′ where wt = (w1,t, w2,t)

′,

vt
iid∼ N(0, V ) and wt

iid∼ N2(0,W ). Here the latent state in period t is θt = (αt, βt)
′. The

problem is that Ft = [1, xt] is neither square nor invertible. But notice that the matrix

F ∗t =

1 xt

0 1


is invertible. Now we add an additional DA zt to yt to construct y∗t = (yt, zt)

′ so that now the

model is

y∗t = F ∗t θt + v∗t

θt = θt−1 + wt

where v∗t = (vt, ut) where u1:T is independent of (v1:T , w1:T ) and ut
iid∼ N(0, 1). By construction

v∗t
iid∼ N2(0, V ∗) where V ∗ is a diagonal matrix with the vector (V, 1) along the diagonal and

the full conditional distribution of zt is N(βt, 1). Then we define the scaled errors as ψ0 = θ0

and ψt = L−1
V ∗(y∗t − F ∗t θt). Let z = z1:T and y∗ = y∗1:T for brevity.

In terms of θ, the likelihood is

p(y, z, θ|V,W ) ∝|V ∗|−T/2 exp

[
−1

2

T∑
t=1

(y∗t − F ∗t θt)′(V ∗)−1(y∗t − F ∗t θt)

]

× |W |−T/2 exp

[
−1

2

T∑
t=1

(θt − θt−1)′W−1(θt − θt−1)

]

∝V −T/2 exp

[
− 1

2V

T∑
t=1

(yt − αt − xtβt)2

]
exp

[
−1

2

t∑
t=1

(zt − βt)2

]

× |W |−T/2 exp

[
−1

2

T∑
t=1

(θt − θt−1)′W−1(θt − θt−1)

]
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Then by transforming to ψ, the back transformation is θt = (F ∗t )−1(y∗t −LV ∗ψt) so the Jacobian

is block diagonal with T copies of (F ∗t )−1LV ∗ along with a single copy of the identity matrix

along the diagonal. So the determinant of the Jacobian is |J | = |V ∗|T/2 and the likelihood can

be written in terms of ψ as

p(y, z, θ|V,W ) ∝ exp

[
−1

2

T∑
t=1

ψ′tψt

]
|W |−T/2 exp

[
−1

2

T∑
t=1

(y∗t − µt)′(F ∗t W (F ∗t )′)−1(y∗t − µt)

]
.

(2.13)

where we define µ1 = LV ∗ψ1 + F ∗1ψ0 and for t = 2, 3, · · · , T , µt = LV ∗ψt + F ∗t (F ∗t−1)−1(y∗t−1 −

LV ∗ψt−1).

Now in order to construct a sampler that uses ψ, we simply add a new step to sampler

to draw z from its full conditional just before transforming to ψ. In the GIS and alternating

algorithms, we now have to draw an updated z every time we change the DA. When using

the states, zt|V,W, θ, y
iid∼ N(βt, 1), so it is easiest to transform to θ before drawing z. So

for example in the SD-SE GIS sampler with V , W , α0, and β0 independent in the prior, an

IG(αV , βV ) prior on V , and an IW (ΛW , λW ) prior on W , the algorithm becomes

Algorithm: SD-SE GIS for dynamic regression. Scaled Disturbance-Scaled Error GIS

Sampler for the dynamic regression model

1. Use the MCFA to sample θ ∼ p(θ|V,W, y).

2. Sample V ∼ IG
(
αV + T/2, βV + 1

2

∑T
t=1(yt − αt − βt)2

)
.

3. Transform θ to γ.

4. Sample W ∼ p(W |V, γ, y).

5. Transform γ to θ.

6. Sample zt
iid∼ N(βt, 1) and form y∗.

7. Transform θ to ψ.

8. Sample V ∼ p(V |W,ψ, y∗).

9. Sample W ∼ IW
(

ΛW +
∑T

t=1wtw
′
t, λW + T

)
.
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Step 8 is particularly tricky since V is a component of V ∗, and V ∗ has the same density

p(V |W,ψ, y) that shows up in the usual case of the scaled disturbances, except now the lower

right diagonal element is set to one. So while we can write down the various algorithms in the

non-invertible F case, the density p(V |W,ψ, y∗) is tricky to work with. In step 8 V is drawn

conditional on y∗, but another option is to draw V conditional on y but not on z. This would

require integrating z out of the likelihood, equation (2.13). It is not clear which of these is

easier or faster, though it is likely that the changing the prior for V and W will have an impact.

2.G EFFICIENTLY DRAWING FROM p(W |V, γ, y) AND p(V |W,ψ, y) IN THE

LLM

From Section 2.D.2, the full conditional distribution of W given γ is

p(W |V, γ, y) ∝ p(V,W, γ, y) ∝ |W |−(λW+p+2)/2 exp

[
−1

2
tr
(
ΛWW

−1
)]

× exp

−1

2

 T∑
t=1

[
yt − Ft

t∑
s=0

G̃s,tLWγt−s − FtG̃t,tγ0

]′
V −1

[
yt − Ft

t−1∑
s=0

G̃s,tLWγt−s − FtG̃t,tγ0

]
where LW is the Cholesky factor of W defined so that LWL

′
W = W . We can write this density

as

p(W |V, γ, y) ∝|W |−(λW+p+2)/2 exp

[
−1

2
tr
(
ΛWW

−1
)]

× exp

[
−1

2

(
vec(LW )′AW vec(LW )− 2BW vec(LW )

)]
where

AW =
T∑
t=1

t∑
s=0

(
γt−sγ

′
t−s ⊗ G̃′s,tF ′tV −1FtG̃s,t

)
and

BW =

T∑
t=1

t∑
s=0

(
γ′t−s ⊗ (yt − FtG̃t,tγ0)′V −1FtG̃s,t

)
can be found using the properties of the vec and tr operators.

Similarly from Section 2.D.3, the full conditional distribution of V given ψ is

p(V |W,ψ, y) ∝ p(V,W,ψ, y) ∝ |V |−(λV +p+2)/2 exp

[
−1

2

(
tr
(
ΛV V

−1
)

+

T∑
t=1

(yt − µt)′(FtWF ′t)
−1(yt − µt)

)]
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where µ1 = LV ψ1 + F1G1ψ0 and for t = 2, 3, · · · , T , µt = LV ψt + FtGtF
−1
t−1(yt−1 − LV ψt−1).

This density can be written in a familiar form:

p(V |W,ψ, y) ∝ p(V,W,ψ, y) ∝ |V |−(λV +p+2)/2 exp

[
−1

2
tr
(
ΛV V

−1
)]

× exp

[
−1

2

(
vec(LV )′AV vec(LV )− 2BV vec(LV )

)]
where

AV =

T∑
t=1

ψtψ
′
t ⊗ (FtWF ′t)

−1 +

T∑
t=2

ψt−1ψ
′
t−1 ⊗ (GtF

−1
t−1)′W−1GtF

−1
t−1

−
T∑
t=2

ψtψ
′
t−1 ⊗ (WF ′t)

−1GtF
−1
t−1 −

T∑
t=2

ψt−1ψ
′
t ⊗ (GtF

−1
t−1)′(FtW )−1

and

BV =ψ′1 ⊗ (y1 + F1G1ψ0)′(F1WF ′1)−1 +
T∑
t=2

ψ′t ⊗ (yt − FtGtF−1
t−1yt−1)′(FtWF ′t)

−1

−
T∑
t=2

ψ′t−1 ⊗ (yt − FtGtF−1
t−1yt−1)′(WF ′t)

−1GtF
−1
t−1

can again be found using the properties of the vec and tr operators. Both of these densities are

of the form

p(X) ∝ |X|−(λ+p+2)/2 exp

[
−1

2

(
tr(ΛX−1) + vec(LX)′A vec(LX)− 2B vec(LX)

)]
where X is a p× p symmetric and positive definite random matrix, LX is the Cholesky factor

of X so that LXL
′
X = X, λ > 0, Λ is a p × p symmetric and positive definite matrix, A is a

p2 × p2 matrix, and B is a 1× p2 matrix.

The complexity of this density is caused by the interaction between the inverse Wishart

prior and the augmented data likelihood in terms of the scaled disturbances for W or for the

scaled errors for V . In the local level model, the density still is not a known form and is difficult

to sample from, but sampling from it is possible. In this case the log density is

log p(x) =− (α+ 1) log x− ax+ b
√
x− c/x+ C

for x > 0 where C is some constant, α > 0 and c > 0 are the hyperparameters for x, and a > 0

and b ∈ < are parameters that depend on the data, y, the relevant data augmentation (ψ or

γ), and the other variable (W or V ). We provide two different rejection sampling strategies

below that work well under different circumstances, and combine them into a single strategy.
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2.G.1 Adaptive rejection sampling

One nice strategy is to use adaptive rejection sampling, e.g. Gilks and Wild (1992). This

requires log p(x) to be concave, which is easy enough to check. The second derivative of log p(x)

is:

∂2 log p(x)

∂x2
= −1

4
bx−3/2 + (α+ 1)x−2 − 2cx−3.

Then we have

∂2 log p(x)

∂x2
< 0 ⇐⇒ − b

4
x3/2 + (α+ 1)x− 2c < 0

which would imply that log p(x) is concave. We can maximize the left hand side of the last

equation very easily. When b ≤ 0 the max occurs at x = ∞ such that LHS > 0, but when

b > 0:

∂LHS

∂x
= −3

8
bx1/2 + α+ 1 = 0 =⇒ xmax =

(α+ 1)2

b2
64

9
.

Then we have

LHS ≤ LHS|x=xmax =
(α+ 1)3

b2
64

27
− 2c

so that

LHS|x=xmax < 0 ⇐⇒ (α+ 1)3

b2
64

27
< 2c ⇐⇒ b >

(
(α+ 1)3

c

)1/2
4
√

2

3
√

3
.

This last condition is necessary and sufficient for log p(x) to be globally (for x > 0) concave

since b < 0 forces LHS > 0 for some x. When the condition is satisfied, we can use adaptive

rejection sampling — which is already implemented in the R package ars (Rodriguez, 2009).

We input the initial evaluations of log p(x) at the mode xmode and at 2xmode and 0.5xmode in

order to get the algorithm going.

2.G.2 Rejection sampling on the log scale

When b ≤
(

(α+1)3

c

)1/2
4
√

2
3
√

3
, which happens often — especially for small T — we need to

rely on a different method to sample from p(x). A naive approach would be to construct a
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normal or t approximation to p(x) and use that as a proposal in a rejection sampler. It turns

out that this is often very inefficient, but for z = log(x) the approach works well. Note that

pz(z) = px(ez)ez

so that we can write the log density of z as (dropping the subscripts):

log p(z) = −aez + bez/2 − αz − ce−z.

The mode of this density zmode can be easily found numerically, and the second derivative is:

∂2 log p(z)

∂z2
= −aez +

b

4
ez/2 − ce−z.

The t approximation then uses the proposal distribution p

tv

(
zmode,

[
− ∂2 log p(z)

∂z2

∣∣∣∣
z=zmode

]−1
)
.

In practice choosing degrees of freedom v = 1 works very well over the region of the parameter

space where adaptive rejection sampling cannot be used. We can easily use this method when

adaptive rejection sampling does not work, then transform z back to x. It remains to check

that the tails of t distribution dominate the tails of our target distribution. Let log q(z) denote

the log density of the proposal distribution. Then we need

log p(z)− log q(z) ≤M

for some constant M, i.e.

−aez + bez/2 − αz − ce−z −
(
v + 1

2

)
log

[
1 +

1

v

(
z − µ
σ

)2
]
≤M

where a > 0, c > 0, α > 0, v > 0, σ > 0, and b, µ ∈ <. We can rewrite the LHS as

ez/2(b− aez/2)− αz − ce−z −
(
v + 1

2

)
log

[
1 +

1

v

(
z − µ
σ

)2
]
.

So as z → ∞ this quantity goes to −∞ since the first term will eventually become negative

no matter the value of b, and all other terms are always negative. Similarly as z → −∞ this

quantity goes to −∞. Now pick any interval (z1, z2) such that outside of the interval, LHS < ε.

Since treated as a function of z the LHS is clearly continuous, it attains a maximum on this

interval, and thus is bounded.
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2.G.3 Intelligently choosing a rejection sampler

In practice, adaptive rejection sampling is relatively efficient for px(x) but inefficient for

pz(z) — so much so that rejection sampling with the t approximation for pz(z) is more efficient.

To minimize computation time, it is best to use adaptive rejection sampling for px(x) when the

concavity condition is satisfied. When it is not, the t approximation works well enough.

2.H EFFICIENTLY DRAWING FROM p(W |V, γ̃, y) AND p(V |W, ψ̃, y) IN THE

LLM

Both the density of log(W )|V, γ̃, y and the density of log(V )|W, ψ̃, y have the following form:

p(z) ∝ exp
[
−αz − ae−z + be−z/2 − cez

]
.

where α > 0, a > 0, c > 0, and b ∈ <. The log density is:

log p(z) = −αz − ae−z + be−z/2 − cez + C

where C is some constant. We only provide one strategy for rejection sampling from this

density: the t approximation. Similar reasoning to the previous subsection above shows that

we can use a t distribution as a proposal in a rejection sampler for this density. Now we choose

the location parameter by maximizing log p(z) in z numerically to find the mode, zmode. Next

the second derivative of log p(z) is given by

∂2 log p(z)

∂z2
= −ae−z +

b

4
e−z/2 − cez.

We then set the scale parameter to be

−
[
∂2 log p(z)

∂z2

∣∣∣∣
z=zmode

]−1

as in the normal approximation, and the degrees of freedom parameter to v = 1. This rejection

sampler is tolerably efficient for our purposes, but there is much room for improvement.
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2.I EQUIVALENCE OF CIS AND GIS IN THE DLM

The CIS algorithm consists of the following steps:

[ψ|V (k),W (k)]→ [V (k+0.5)|W (k), ψ]→ [ψ̃|V (k+0.5),W (k), ψ]→ [V (k+1)|W (k), ψ̃]→

[γ̃|V (k+1),W (k), ψ̃]→ [W (k+0.5)|V (k+1), γ̃]→ [γ|V (k+1),W (k+0.5), γ̃]→ [W (k+1)|V (k+1), γ].

In the fourth step of line one and the second step of line two, each of those densities would be

unchanged if we conditioned on θ instead of ψ̃ on the first line or γ̃ on the second line. So the

CIS algorithm above is equivalent to the following:

[ψ|V (k),W (k)]→ [V (k+0.5)|W (k), ψ]→ [θ|V (k+0.5),W (k), ψ]→ [V (k+1)|W (k), θ]→

[W (k+0.5)|V (k+1), θ]→ [γ|V (k+1),W (k+0.5), θ]→ [W (k+1)|V (k+1), γ].

Now since V and W are conditionally independent given θ and y, the last step of line one and

the first step of line 2 can be switched:

[ψ|V (k),W (k)]→ [V (k+0.5)|W (k), ψ]→ [θ|V (k+0.5),W (k), ψ]→ [W (k+0.5)|V (k+0.5), θ]→

[V (k+1)|W (k+0.5), θ]→ [γ|V (k+1),W (k+0.5), θ]→ [W (k+1)|V (k+1), γ].

Next V ’s conditional density is the same whether we condition on θ or γ, so we can do the V

step between the γ step and the W step in line two. Similarly we can move the W step to

between the V step and the θ step in line one. This yields:

[ψ|V (k),W (k)]→ [V (k+0.5)|W (k), ψ]→ [W (k+0.5)|V (k+0.5), ψ]→

[γ|V (k+0.5),W (k+0.5), ψ]→ [V (k+1)|W (k+0.5), γ]→ [W (k+1)|V (k+1), γ].

This is actually a SE-SD GIS algorithm, so the CIS sampler we started with is equivalent to

SE-SD GIS. Since we do not expect the order in which the DAs appear in a GIS algorithm

to matter, CIS should have the same mixing and convergence properties as the SD-SE GIS

algorithm we constructed.

2.J PARTIAL CIS ALGORITHMS IN THE DLM

In addition to the GIS and CIS algorithms discussed in the main body of the article, Yu

and Meng (2011) also introduce partial CIS algorithms. While a CIS algorithm interweaves in
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separate Gibbs steps for each sub-vector of the parameter, a partial CIS algorithm has a usual

Gibbs step for at least one of the parameter vectors. For example, suppose that the model

parameter is φ = (φ1, φ2), and γ1, γ2, and θ are available DAs. Then a partial CIS algorithm

using these DAs is

Algorithm: partial CIS. Partial Componentwise Interweaving Strategy

[γ1|φ(k)
1 , φ

(k)
2 ] → [φ

(k+0.5)
1 |φ(k)

2 , γ1] → [γ2|φ(k+0.5)
1 , φ

(k)
2 , γ1] → [φ

(k+1)
1 |φ(k)

2 , γ2] →

[θ|φ(k+1)
1 , φ

(k)
2 , γ2] → [φ

(k+1)
2 |φ(k+1)

1 , θ].

The first line is an interweaving step for φ1 while the second line is a standard Gibbs step for

φ2. Partial CIS algorithms are easier to construct than full CIS algorithms at the cost of slower

convergence Yu and Meng (2011).

In the DLM we can construct two partial CIS algorithms using the wrongly-scaled DAs in

much the same way they were used to construct the full CIS algorithm. The first algorithm

interweaves for W using the scaled disturbances, γ, and the wrongly-scaled disturbances, γ̃:

[θ|V (k),W (k)]→ [V (k+1)|W (k), θ]→

[W (k+0.5)|V (k+1), θ]→ [γ|V (k+1),W (k+0.5), θ]→ [W (k+1)|V (k+1), γ].

As in the construction of the full CIS algorithm, we use θ instead of γ̃ in the second line since

p(W |V, γ̃) = p(W |V, θ). Using an argument similar to that used in Section 2.I, we can show

that this partial CIS algorithm is equivalent to the SD-State GIS algorithm.

Analogously, we can use the scaled errors, ψ, and the wrongly-scaled errors, ψ̃, to construct

a partial CIS algorithm that interweaves for V :

[ψ|V (k),W (k)]→ [V (k+0.5)|W (k), ψ]→ [θ|V (k+0.5),W (k), ψ]→ [V (k+1)|W (k), θ]→

[W (k+1)|V (k+1), θ].

This algorithm is equivalent to the SE-State GIS algorithm.
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2.K USING POSTERIOR CORRELATIONS TO UNDERSTAND PATTERNS

OF ESP

Most of the patterns in Figures 2.M.1, 2.M.2, and 2.M.3 in the next section can be explained

by Figure 2.K.1, which contains the estimated posterior correlations between various functions

of parameters estimated using the simulations from the Triple-Alt sampler for a time series

with T = 100. We omit a similar analysis for T = 10 and T = 1000. The state sampler consists

of two steps — a draw of θ given V and W , and a draw of (V,W ) given θ. From Section 2.D.1

we have that conditional on θ, V and W are independent in the posterior and each has an

inverse gamma distribution that depends on the states only through the second parameter:

bV ≡ βV +
T∑
t=1

(yt − θt)2/2 bW ≡ βW +
T∑
t=1

(θt − θt−1)2/2.

So we can view (bV , bW ) as the data augmentation instead of θ and thus the state sampler is

[bV , bW |V (k),W (k)]→ [V (k+1),W (k+1)|bV , bW ].

Thus the dependence between (V,W ) and (bV , bW ) in the posterior will determine how much

the state sampler moves in a given iteration and, in particular, it is possible that V and W have

very different serial dependence from each other since we are drawing them jointly. When the

dependence between V and bV is high, the (V,W ) step will hardly move V even if it drastically

moves W since V and W are independent. However, the (bV , bW ) step may move both elements

a moderate amount since they both depend on (V,W ).

In Figure 2.K.1 we see that the posterior correlation between V and bV is high in magnitude

and positive when R∗ > 1 while the posterior correlation between V and bW is moderate to

low and negative. When R∗ is large enough though, the posterior correlation between V and

bW evaporates. Similarly when R∗ < 1 the posterior correlation between W and bW is high

and positive and the posterior correlation between W and bV is high and negative. Again as

R∗ becomes large enough the correlation between W and bV goes to zero. So when R∗ > 1,

the draw of (bV , bW ) is unlikely to move bV much since bV is so highly correlated with V and

essentially uncorrelated with bW , but bW is essentially uncorrelated with W and negatively

correlated with V so bW is likely to move a fair amount. Furthermore the draw of V is highly
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correlated with bV while the draw of W is essentially independent of bW (and the draws of V

and W are independent conditional on bV and bW ). Thus when R∗ > 1 we should expect high

serial dependence for V and low serial dependence for W , and so low ESP for V and high ESP

for W , which is exactly what we see in Figure 2.M.2. By similar reasoning when R∗ < 1, we

should expect low serial dependence for V and high serial dependence for W and thus high

ESP for V and low ESP for W , which can also be seen in Figure 2.M.2.

For the SD sampler, things are a bit more complicated. The draw of V |W,γ still depends

on bV since it is the same inverse gamma draw as in the state sampler, but the draw of W |V, γ

now depends on aγ and bγ defined in Section 2.D.2 as

aγ ≡
1

2V

T∑
t=1

 t∑
j=1

γj

2

bγ ≡
1

V

T∑
t=1

(yt − γ0)

 t∑
j=1

γj

 .

So the dependence between V and bV determines how much the chain moves in the V step, and

the dependence between W and (aγ , bγ) determines how much it moves in the W step. The

dependence between (V,W ) and γ determines how much the chain moves in the DA step, but

we can view this step instead as a draw of bV in which case the dependence between W and

bV determines how much the chain moves in that step. So if any one of these steps has high

dependence, we should expect every element of the chain, and (V,W ) in particular, to have

high serial dependence in the chain. The SE sampler is analogous to the SD sampler except

with bW , aψ and bψ where

aψ =
1

2W

T∑
t=1

(Lψt)2 bψ =
1

W

T∑
t=1

(LψtLyt).

In order to analyze the SD sampler, first suppose R∗ > 1. Then from Figure 2.K.1 bV has

high correlation with V and low correlation with W , so the draw of bV should not move the

chain much. Next, the draw of V should again not move the chain much because of the high

correlation between V and bV . Finally the draw of W has a fair chance to move the chain

because it has low correlation with both aγ and bγ . But this has little impact on bV and thus

the entire chain since bV is so highly correlated with V but hardly correlated with W . So

when R∗ > 1, we should expect high serial dependence and low ESP for V . We should also

expect similar behavior for W since the entire chain is hardly moving so W ’s hyperparameters



www.manaraa.com

55

T: 100

0.01

0.1

1

10

100

0.
01 0.

1 1 10 10
0

V = noise

W
 =

 s
ig

na
l

−1.0

−0.5

0.0

0.5

1.0
Corr

Posterior Correlation Between V and bV
T: 100

0.01

0.1

1

10

100

0.
01 0.

1 1 10 10
0

V = noise

W
 =

 s
ig

na
l

−1.0

−0.5

0.0

0.5

1.0
Corr

Posterior Correlation Between V and bW

T: 100

0.01

0.1

1

10

100

0.
01 0.

1 1 10 10
0

V = noise

W
 =

 s
ig

na
l

−1.0

−0.5

0.0

0.5

1.0
Corr

Posterior Correlation Between V and aψ

T: 100

0.01

0.1

1

10

100

0.
01 0.

1 1 10 10
0

V = noise

W
 =

 s
ig

na
l

−1.0

−0.5

0.0

0.5

1.0
Corr

Posterior Correlation Between V and bψ

T: 100

0.01

0.1

1

10

100

0.
01 0.

1 1 10 10
0

V = noise

W
 =

 s
ig

na
l

−1.0

−0.5

0.0

0.5

1.0
Corr

Posterior Correlation Between W and bW
T: 100

0.01

0.1

1

10

100

0.
01 0.

1 1 10 10
0

V = noise

W
 =

 s
ig

na
l

−1.0

−0.5

0.0

0.5

1.0
Corr

Posterior Correlation Between W and bV

T: 100

0.01

0.1

1

10

100

0.
01 0.

1 1 10 10
0

V = noise

W
 =

 s
ig

na
l

−1.0

−0.5

0.0

0.5

1.0
Corr

Posterior Correlation Between W and aγ

T: 100

0.01

0.1

1

10

100

0.
01 0.

1 1 10 10
0

V = noise

W
 =

 s
ig

na
l

−1.0

−0.5

0.0

0.5

1.0
Corr

Posterior Correlation Between W and bγ

Figure 2.K.1: Posterior correlation between V or W and bV , bW , aγ , bγ , aψ or bψ. X and Y
axes indicate the true values of V and W respectively for the simulated data with T = 100.

are hardly moving. This is roughly what we see in Figure 2.M.2, though this reasoning does

not allow us to predict which of V and W will have lower ESP. When R∗ < 1 the posterior

correlation in each of the steps is broken, though in the W step the correlation between W

and both aγ and bγ becomes negative and somewhat high in magnitude. Here we should not

expect less serial dependence in V or W , but we should perhaps expect higher ESP’s since

negatively correlated draws decrease Monte Carlo standard error. Indeed, we see ESP’s near

one for both variances in Figure 2.M.2. The SE sampler is analogous to the SD sampler and

a similar analysis applies — the posterior correlations between V or W and bW , aψ or bψ in

Figure 2.K.1 roughly predict the ESP of the SE sampler in Figure 2.M.2. When one or more of

the correlations are high, ESPs for V and W are low while when all of the correlations are low,

both ESPs are high. We omit a similar analysis of the wrongly-scaled samplers for brevity, but

note that their behavior will allows us to predict the behavior of the CIS sampler.

2.L COMPUTATIONAL TIME

From a practical standpoint a more important question than how well the chain mixes is the

full computational time required to adequately characterize the target posterior distribution.

In order to investigate this, we compute the natural log of the average time in minutes required

for each sampler to achieve an effective sample size of 1000 — in other words the log minutes

per 1000 effective draws. All simulations were performed on a server with Intel Xeon X5675
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3.07 GHz processors. While different systems will yield different absolute times, the relative

times should be similar. Figure 2.L.1 contains plots of the log minutes per 1000 effective draws

for both V and W and for each of the samplers.
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Figure 2.L.1: Log of the time in minutes per 1000 effective draws in the posterior sampler for V
and W , for T = 100 in each sampler. Figure 2.L.1a contains the base samplers, Figure 2.L.1b
contains the GIS and CIS samplers, while Figure 2.L.1c contains the Alt samplers. Log times
larger than three log min are rounded down to three for plotting purposes.

For T = 100 the pattern we saw for ESP also appears for log minutes per 1000 effective

draws. The State sampler becomes slow to reach 1000 effective draws for V when R∗ > 1 and

for W when R∗ < 1. The SD and SE samplers behave as expected — the SD sampler is slow

for both V and W when R∗ > 1 while the SD sampler is slow for both V and W when R∗ < 1.

The SD-SE GIS, Triple GIS and CIS algorithms appear to be the big winners here and are

almost indistinguishable. All three algorithms are slightly slower for both V and W when R∗

is near one, though for larger T , when R∗ is near or below one all three are slow for W (plots

available in Section 2.M). Compared to the state sampler, all three offer large gains over most

of the parameter space. There appears to be no difference between a GIS algorithm and the

corresponding alternating algorithm in terms of log time per 1000 effective draws, so the SD-SE
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Alt and Triple Alt algorithms are both just as efficient as the best interweaving algorithms.

This may not always be the case though — the GIS version of an algorithm is computationally

cheaper than the Alt version since it consists of three of the four same steps, and in the fourth

step the Alt algorithm has to obtain a random draw while the GIS algorithm typically only

has to make a transformation. The more expensive that draw is relative to the transformation,

the faster GIS will be relative to Alt.
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2.M PLOTS FOR ALL VALUES OF T
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Figure 2.M.1: Effective sample proportion in the posterior sampler for a time series of length
T = 10, for V and W in the each sampler. Figure 2.M.1a contains ESP for V and W for
the base samplers, Figure 2.M.1b contains ESP in the GIS and CIS samplers, and Figure
2.M.1c contains ESP in the Alt samplers. X and Y axes indicate the true values of V and W
respectively for the simulated data. Note that the signal-to-noise ratio is constant moving up
any diagonal. In the upper left the signal is high, in the lower right the noise is high.
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Figure 2.M.2: Effective sample proportion in the posterior sampler for a time series of length
T = 100, for V and W in the each sampler. Figure 2.M.2a contains ESP for V and W for
the base samplers, Figure 2.M.2b contains ESP in the GIS and CIS samplers, and Figure
2.M.2c contains ESP in the Alt samplers. X and Y axes indicate the true values of V and W
respectively for the simulated data. Note that the signal-to-noise ratio is constant moving up
any diagonal. In the upper left the signal is high, in the lower right the noise is high.
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Figure 2.M.3: Effective sample proportion in the posterior sampler for a time series of length
T = 1000, for V and W in the each sampler. Figure 2.M.3a contains ESP for V and W
for the base samplers, Figure 2.M.3b contains ESP in the GIS and CIS samplers, and Figure
2.M.3c contains ESP in the Alt samplers. X and Y axes indicate the true values of V and W
respectively for the simulated data. Note that the signal-to-noise ratio is constant moving up
any diagonal. In the upper left the signal is high, in the lower right the noise is high.
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Figure 2.M.4: Log of the time in minutes per 1000 effective draws in the posterior sampler
for V and W , for T = 10 in each sampler. Figure 2.M.4a contains the base samplers, Figure
2.M.4b contains the GIS and CIS samplers, while Figure 2.M.4c contains the Alt samplers. Log
times larger than three log min are rounded down to three for plotting purposes.
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Figure 2.M.5: Log of the time in minutes per 1000 effective draws in the posterior sampler
for V and W , for T = 100 in each sampler. Figure 2.M.5a contains the base samplers, Figure
2.M.5b contains the GIS and CIS samplers, while Figure 2.M.5c contains the Alt samplers. Log
times larger than three log min are rounded down to three for plotting purposes.
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Figure 2.M.6: Log of the time in minutes per 1000 effective draws in the posterior sampler for
V and W , for T = 1000 in each sampler. Figure 2.M.6a contains the base samplers, Figure
2.M.6b contains the GIS and CIS samplers, while Figure 2.M.6c contains the Alt samplers. Log
times larger than three log min are rounded down to three for plotting purposes.
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CHAPTER 3. APPLICATION OF INTERWEAVING IN DLMS TO AN

EXCHANGE AND SPECIALIZATION EXPERIMENT

A paper to appear in Bayesian Statistics from Methods to Models and Applications

Abstract

Markov chain Monte Carlo is often particularly challenging in dynamic models. In statespace

models, the data augmentation algorithm (Tanner and Wong, 1987) is a commonly used ap-

proach, e.g. Frühwirth-Schnatter (1994) and Carter and Kohn (1994) in dynamic linear models.

Using two data augmentations, Yu and Meng (2011) introduces a method of “interweaving”

between the two augmentations in order to construct an improved algorithm. Picking up on

this, Simpson et al. (2014) introduces several new augmentations for the dynamic linear model

and builds interweaving algorithms based on these augmentations. In the context of a multi-

variate model using data from an economic experiment intended to study the disequilibrium

dynamics of economic efficiency under a variety of conditions, we use these interweaving ideas

and show how to implement them simply despite complications that arise because the model

has latent states with a higher dimension than the data.
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3.1 Introduction

Several innovations on the original data augmentation (DA) algorithm (Tanner and Wong,

1987) have been proposed in the literature, see e.g. Van Dyk and Meng (2001) for a thorough

overview. One such innovation is the notion of interweaving two separate DAs together (Yu

and Meng, 2011). This general idea has been picked up on in the dynamic setting by Kastner

and Frühwirth-Schnatter (2014) in stochastic volatility models and Simpson et al. (2014) in

dynamic linear models (DLMs). Previous literature exploring alternate DAs in statespace

models includes Pitt and Shephard (1999) for the AR(1) plus noise model, Frühwirth-Schnatter

(2004) for dynamic regression models, Strickland et al. (2008) for nonlinear models including the

stochastic volatility model, Frühwirth-Schnatter and Sögner (2008) for the stochastic volatility

model, and Frühwirth-Schnatter and Wagner (2010) in the context of model selection, though

there are many more.

Much of this literature focuses on stochastic volatility and similar models (Shephard, 1996;

Frühwirth-Schnatter and Sögner, 2003; Roberts et al., 2004; Bos and Shephard, 2006; Strickland

et al., 2008; Frühwirth-Schnatter and Sögner, 2008; Kastner and Frühwirth-Schnatter, 2014),

though Simpson et al. (2014) focuses on DLMs and develops several new data augmentations

for a general class DLMs. Using these DAs, they construct several Markov chain Monte Carlo

(MCMC) algorithms including interweaving algorithms based on Yu and Meng (2011), and

compare these algorithms in a simulation study using the local level model. We seek to illustrate

the interweaving methods introduced in Simpson et al. (2014) in the context of model that can

be expressed either as a hierarchical DLM with equal state and data dimensions or simply

a DLM with a state dimension larger than the data dimension. The latter representation in

particular provides some difficulty in directly applying the methods discussed in Simpson et al.

(2014), though we show how to easily overcome this.

Throughout this article we will use the notation p(.|.) to denote the potentially conditional

density of the enclosed random variables, x1:T = (x1, . . . , xT )′ when xt is a scalar, and x1:T =

(x′1, . . . , x
′
T )′ when xt is a column vector so that x1:T is also a column vector in both cases. The

rest of this paper is organized as follows: Section 3.2 will describe the data which arise from a
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series of economics experiments, and Section 3.3 will describe the model we wish to fit to these

data. Section 4.6 will cover how to do MCMC in this model, including a fairly standard DA

algorithm and an interweaving algorithm based on the ideas in Simpson et al. (2014) and Yu

and Meng (2011). Finally, Section 3.5 will contain the results of fitting the model using both

algorithms and Section 3.6 will briefly conclude.

3.2 Data

Economists are interested in determining the factors that affect the level of economic effi-

ciency within an economy where economic efficiency can roughly be defined as the proportion of

maximum possible dollar value of the total benefits to all actors in the economy, also known as

Kaldor-Hicks efficiency and based on compensating variation (Kaldor, 1939; Mas-Colell et al.,

1995). Studying this in the real world is messy and difficult in part because computing this

proportion is nontrivial. In addition, most economic models only allow the analysis of equilib-

rium efficiency. To the extent that efficiency dynamics are studied, they are typically studied

as equilibrium dynamics. Disequilibrium dynamics are difficult to study but potentially impor-

tant. In order to avoid these difficulties while still learning something about the disequilibrium

dynamics of efficiency, a series of laboratory experiments were designed and run by a group of

experimental economists in order to explore what factors impact the disequilibrium dynamics

of a small laboratory economy (Crockett et al., 2009; Kimbrough et al., 2010). What follows is

a brief description of these experiments.1

In a single session of the experiment, 2, 4, or 8 subjects are recruited to participate, de-

pending on the treatment. Each subject sits at a computer visually isolated from the rest of the

subjects. On the computer, each subject controls an avatar in a virtual village where they can

interact with the other subjects in the experiment. At any time during the experiment, subjects

can communicate with each other by typing into a chat window. Each subject in a given session

has control over a house and a field within the village and can view each other subject’s house

and field. The experiment runs for 40 periods, each lasting 100 seconds. Within a period, each

1For a more detailed description of the experimental design, see Crockett et al. (2009) especially, but also
Kimbrough et al. (2010).
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subject has to make a production decision and a consumption decision. Every seventh period

is a ‘rest’ period where no production or consumption takes place, but the subjects can still

communicate. This results in 35 periods of production and consumption.

There are two types of goods in this world, each produced in a subject’s field: red and blue,

and two types of subjects: odd and even. Half of the subjects are odd and half are even. Both

odd and even subjects can produce both types of goods and earn money for consuming both

types of goods, but they produce and consume in different ways. Odd subjects must red and

blue in a fixed proportion of 1 red for every 3 blue to earn U.S. cents. Even subjects, on the other

hand, must consume 2 red for every 1 blue to earn U.S. cents. However, even subjects are more

effective at producing blue while odd subjects are more effective at producing red. Production

occurs in the first 10 seconds of a period where each subject must decide how much of that

time to devote to producing red and blue respectively using a slider on their screen. The last 90

seconds of the period is reserved for trading and consumption, though subjects have to discover

that they may trade by noticing that they can use their mouse to drag and drop red and/or

blue icons (representing one unit of red or blue respectively) onto another subject’s house. The

maximum level of village wide production takes place when each subject spends 100% of their

time producing the good that they can produce the most efficiently, i.e. odd subjects produce

only red and even subjects produce only blue. Maximum consumption and thus maximum

profit occurs when under maximum production and the subjects trade extensively with each

other. In every period, the efficiency level of the village is recorded.

A wide variety of treatments were applied to the various sessions of this experiment, in-

cluding variations on group size and group formation, various levels of knowledge about the

subject’s own production function, allowing theft or not and if so, whether mechanisms for

punishing theft are available. See Crockett et al. (2009) and Kimbrough et al. (2010) for a

detailed description of these treatments. Each treatment consists of several replications —

anywhere from four to six. The challenge, then, is to model a time series of proportions that

takes into account the nested structure of the replications within the treatments. To deal with

the proportions, we simply transform the efficiencies to the real line using the logit transfor-

mation, i.e. logit(x) = log(x/(1 − x)). In some replications of some treatments, efficiencies of
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100% or 0% are obtained which causes a problem the logit and other plausible transformations.

We only consider the Steal treatment of Kimbrough et al. (2010) in order to avoid this issue

and simplify the model a bit. This allows for a useful illustration of Simpson et al. (2014) with-

out too much additional complication. In short, the Steal treatment uses the Build8 structure

from previous treatments that starts the subjects in four groups of two for several periods,

then combines them into two groups of four for several more periods, then finally combines

the groups into a single group of eight for the rest of the experiment. The only change from

this structure is that Steal allows subjects to steal either of the goods from each other, which

was not possible in previous treatments. Reference Kimbrough et al. (2010) has further details

about this treatment and the various treatments it spawned in order to see what institutional

arrangements help subjects prevent theft.

3.3 Model

Let j = 1, 2, . . . , J denote the replications of the treatment and t = 1, 2, . . . , T denote

periods within these replications. Then let yj,t denote the observed logit efficiency of the j’th

replication in the t’th period. Consider the following model

yj,t =µt + θj,t + vj,t (observation equation)

θj,t =θj,t−1 + wj,t (replication level system equation)

µt =µt−1 + ut (treatment level system equation) (3.1)

for j = 1, 2, . . . , J and t = 1, 2, . . . , T , where (v1:J,1:T , w1:J,1:T , u1:T ) are mutually independent

with vj,t ∼ N(0, Vj), wj,t ∼ N(0,Wj), and ut ∼ N(0, U). The latent treatment level logit

efficiency is represented by µt and evolves via a random walk. On the replication level, θj,t

represents replication j’s deviation from the the treatment logit efficiency in period t which also

evolves over time via a random walk. Then µt + θj,t is replication level latent logit efficiency.

Finally yj,t represents the observed logit efficiency of replication j in period t. The amount

replication j’s path tends to differ from the treatment level path is controlled by the relative

values of Wj and U — the larger Wj is relative to U , the less replication j’s path is affected

by the treatment level path. Finally, Vj represents how much of the change in logit efficiency
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is independent of previous changes. The relative size of Vj compared to Wj and U tells us

how much logit efficiency changes over time due to independent sources of error relative to

the replication and treatment level evolutionary processes. So in this sense, µt + θj,t can be

seen as the portion of replication j’s logit efficiency that is carried on into the next period, or

sustainable in a certain sense.

Another way to represent this model is by writing it in terms of the replication level latent

logit efficiencies, φj,t = µt + θj,t. Under this parameterization, the model is

yj,t =φj,t + vj,t

φj,t =φj,t−1 + wj,t + ut (3.2)

for j = 1, 2, . . . , J and t = 1, 2, . . . , T where we substitute ut in for µt−µt−1. This representation

shows us that the replication level latent logit efficiencies evolve according to a correlated

random walk where U controls the degree of correlation between the replications.

Finally, if we let θt = (µt, θ
′
1:J,t)

′, yt = y1:J,t, V = diag(V1, . . . , VJ), W = diag(U,W1, . . . ,WJ),

and F = [1J×1 IJ×J ], we can write the model as a multivariate DLM:

yt|θ0:T ∼NJ(Fθt, V )

θt|θ0:(t−1) ∼NJ+1(θt−1,W ) (3.3)

for t = 1, 2, . . . , T . This representation will be useful for constructing MCMC algorithms for the

model. Using this representation, we need priors for the Vj ’s, Wj ’s, U , and θ0 to complete the

model. We will suppose that they are independent with θ0 ∼ NJ+1(m0, C0), Vj ∼ IG(aVj , bVj ),

Wj ∼ IG(aWj , bWj ), and U ∼ IG(aU , bU ). We will set m0 = 0J+1, C0 = diag(100), aVj =

aWj = au = 1.5 and bVj = bWj = bU = 0.25. This prior on the variance parameters has

essentially zero mass below 0.02 and above 2, which allows for a fairly wide range of parameter

estimates relative to the scale of the data. These priors are chosen for convenience in illustrating

the MCMC method of Simpson et al. (2014) and for simplicity, but a simple way to use the

inverse gamma priors without their well known inferential problems (Gelman, 2006) is to put

gamma hyperpriors on the b parameters rather than fixing them. The marginal priors on the

standard deviations will then be half-t and in the MCMC samplers we discuss a Gibbs step will
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have to be added for drawing the b’s from a Gamma distribution. This prior is the hierarchical

inverse Wishart prior of Huang and Wand (2013) in the scalar case.

3.4 Markov chain Monte Carlo

We construct two separate MCMC samplers for this model. One is a naive data augmenta-

tion algorithm and the other takes advantage of the interweaving technology of Yu and Meng

(2011), particularly the developments of Simpson et al. (2014) for DLMs. We primarily use the

DLM representation of the model given in (3.3).

3.4.1 Naive Data Augmentation

The standard DA algorithm characterizes the posterior of (V,W ) by using a Gibbs sampler

to draw from the posterior distribution of (V,W, θ0:T ) (Tanner and Wong, 1987). In this par-

ticular case we are also interested in the posterior of θ0:T , which is common in dynamic models,

but this does not change the MCMC strategy. The sampler is based on Frühwirth-Schnatter

(1994) and Carter and Kohn (1994) and consists of two steps, a draw from p(θ0:T |V,W, y1:T )

and a draw from p(V,W |θ0:T , y1:T ). In order to construct this algorithm we need these two

densities.

First, from the DLM representation of the model in (3.3), and the priors we can write the

joint posterior density of V , W , and θ0:T as

p(V,W,θ0:T |y1:T ) ∝ |V |−T/2 exp

[
−1

2

T∑
t=1

(yt − Fθt)′V −1(yt − Fθt)

]

×|W |−T/2 exp

[
−1

2

T∑
t=1

(θt − θt−1)′W−1(θt − θt−1)′

]

× exp

[
−1

2
(θ0 −m0)′C−1

0 (θ0 −m0)

]
U−aU−1 exp

[
− 1

U
bU

]
×

J∏
j=1

V
−aVj−1

j exp

[
− 1

Vj
bVj

]
W
−aWj−1

j exp

[
− 1

Wj
bWj

]
. (3.4)

From here we can derive the smoothing density, or conditional posterior density of θ0:T .

We use the method of McCausland et al. (2011), based on Rue (2001), for drawing from this

density, called the mixed Cholesky factor algorithm (MCFA) by Simpson et al. (2014). The
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following derivation closely follows Appendix C of Simpson et al. (2014). The full conditional

density of θ0:T can be written as

p(θ0:T |V,W, y1:T ) ∝ exp

[
−1

2
g(θ0:T )

]
where

g(θ0:T ) =
T∑
t=1

(yt − Fθt)′V −1(yt − Fθt) +
T∑
t=1

(θt − θt−1)′W−1(θt − θt−1)

+ (θ0 −m0)′C−1
0 (θ0 −m0).

Then g has the form g(θ0:T ) = θ′0:TΩθ0:T − 2θ′0:Tω +K where K is some constant with respect

to θ0:T , Ω is a square, symmetric matrix of dimension (J + 1)(T + 1) and ω is a column vector

of dimension (J + 1)(T + 1). This gives θ0:T |V,W, y1:T ∼ N(J+1)(T+1)(Ω
−1ω,Ω−1). Further, Ω

is block tridiagonal since there are no cross product terms involving θt and θt+k where |k| > 1.

Because of this, the Cholesky factor and thus inverse of Ω can be efficiently computed leading

to the Cholesky factor algorithm (CFA) (Rue, 2001). Instead of computing the Cholesky factor

of Ω all at once before drawing θ0:T as in the CFA, the same technology can be used to draw

θT , then θt|θ(t+1):T recursively in a backward sampling structure, resulting in the MCFA. In

simulations, the MCFA has been found to be significantly cheaper than Kalman filter based

methods and often cheaper than the CFA (McCausland et al., 2011).

In order to implement the algorithm, we need to first characterize the diagonal and off

diagonal blocks of Ω and the blocks of ω:

Ω0,0 = C−1
0 +G′1W

−1G1

Ωt,t = F ′V −1F + 2W−1 for t = 1, 2, . . . T − 1

ΩT,T = F ′V −1F +W−1

Ωt,t−1 = −W−1
t = Ωt−1,t for t = 1, 2, . . . T

w0 = C−1
0 m0

wt = F ′V −1yt for t = 1, 2, . . . T.

Now let Σ0 = Ω−1
0,0, Σt = (Ωt,t − Ωt,t−1Σt−1Ωt−1,t)

−1 for t = 1, 2, . . . , T , h0 = Σ0w0, and

ht = Σt(wt − Ωt,t−1ht−1) for t = 1, 2, . . . , T . Then to complete the MCFA we perform the
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following draws recursively

θT ∼N(hT ,ΣT )

θt|θ(t+1):T ∼N(ht − ΣtΩt,t+1θt+1,Σt) for t = T − 1, T − 2, . . . , 0.

The second step of the DA algorithm requires a draw from p(V,W |θ0:T , y1:T ). Recalling

that V = diag(V1, . . . , VJ) and W = diag(U,W1, . . . ,WJ), this density is

p(V,W |θ0:T , y1:T ) ∝ U−aU−T/2−1 exp

[
− 1

U

(
bU +

1

2

T∑
t=1

(µt − µt−1)2

)]

×
J∏
j=1

V
−aVj−T/2−1

j exp

[
− 1

Vj

(
bVj +

1

2

T∑
t=1

(yj,t − µt − θj,t)2

)]

×
J∏
j=1

W
−aWj−T/2−1

j exp

[
− 1

Wj

(
bWj +

1

2

T∑
t=1

(θj,t − θj,t−1)2

)]
.

This is the product of inverse gamma densities, so a draw from this density can easily be

accomplished by

Vj ∼ IG(ãVj , b̃Vj ) for j = 1, 2, . . . , J

Wj ∼ IG(ãWj , b̃Wj ) for j = 1, 2, . . . , J

U ∼ IG(ãU , b̃U )

where ãU = aU + T/2, b̃U = bU +
∑T

t=1(µt−µt−1)2/2, and for j = 1, 2, . . . , J , ãVj = aVj + T/2,

b̃Vj = bVj +
∑T

t=1(yj,t−µt− θj,t)2/2, ãWj = aWj +T/2, and b̃Wj = bWj +
∑T

t=1(θj,t− θj,t−1)2/2.

So we can write the naive DA algorithm as follows:

1. Draw θ0:T ∼ N(Ω−1ω,Ω−1) using the MCFA.

2. Draw U ∼ IG(ãU , b̃U ).

3. For j = 1, 2, . . . , J draw Vj ∼ IG(ãVj , b̃Vj ) and Wj ∼ IG(ãWj , b̃Wj ).

Note that step 2 and the 2J sub steps of step 3 can be parallelized since the draws are all

independent, though we do not explore this possibility.
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3.4.2 Interweaving

The basic idea of interweaving is to use two separate DAs and “weave” them together (Yu

and Meng, 2011). Suppose were have the DAs γ0:T and ψ0:T . Then an alternating algorithm

for our model consists of four steps:

[γ0:T |V,W, y1:T ]→ [V,W |γ0:T , y1:T ]→ [ψ0:T |V,W, y1:T ]→ [V,W |ψ0:T , y1:T ].

The first two steps are simply the two steps of the DA algorithm based on γ0:T while the last

two steps are the two steps of the DA algorithm based on ψ0:T . A global interweaving strategy

(GIS) using these two augmentations is very similar:

[γ0:T |V,W, y1:T ]→ [V,W |γ0:T , y1:T ]→ [ψ0:T |V,W, γ0:T , y1:T ]→ [V,W |ψ0:T , y1:T ].

The only difference is that in step 3, we condition on γ0:T as well as V , W , and y1:T . Often, this

is a transformation using the definition of γ0:T and ψ0:T , and not a random draw. When step 3

is a transformation, this reduces the computational cost relative to the alternating algorithm.

Depending on the properties of the data augmentations used, changing step 3 in this manner

can also drastically improve the behavior of the Markov chain whether or not step 3 is a

transformation (Yu and Meng, 2011).

Reference Simpson et al. (2014) defines several DAs for the DLM, including the following

two — the scaled disturbances, defined by γt = L−1
W (θt−θt−1), and the scaled errors, defined by

ψt = L−1
V (yt−Fθt) for t = 1, 2, . . . , T and ψ0 = γ0 = θ0 where LX denotes the lower triangular

Cholesky factor of the symmetric and positive definite matrix X. Since the dimension of yt

and θt are not the same, the scaled errors cannot be directly used without some additional

augmentation. Another option is to use a representation of the model which removes the treat-

ment level states, given in (3.2). Using this is unwieldy because the full conditional posterior of

(W1:J , U) becomes complicated since the φj,t’s are correlated across groups. Instead of either

of those, we will take a particularly simple approach. Consider the hierarchical representation

of the model given in (3.1). For j = 1, 2, . . . , J define the replication level scaled disturbances

as γj,t = (θj,t − θj,t−1)/
√
Wj for t = 1, 2, . . . , T and γj,0 = θj,0 and the replication level scaled

errors as ψj,t = (yj,t−µt−θj,t)/
√
Vj for t = 1, 2, . . . , T and ψj,0 = θj,0. Now let γt = (µt, γ

′
1:J,t)

′
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and ψt = (µt, ψ
′
1:J,t)

′ Then we can easily interweave between γ0:T and ψ0:T since these are

one-to-one transformations of each other. Specifically the GIS algorithm we seek to construct

is

1. Draw γ0:T ∼ p(γ0:T |V1:J ,W1:J , U, y1:T ).

2. Draw (V1:J ,W1:J , U) ∼ p(V1:J ,W1:J , U |γ0:T , y1:T )

3. Transform γ0:T → ψ0:T and draw (V1:J ,W1:J , U) ∼ p(V1:J ,W1:J , U |ψ0:T , y1:T )

In order to complete this algorithm, we need to characterize the relevant full conditionals.

First, consider the transformation from θj,0:T to γj,0:T . The Jacobian is triangular with a one

and T copies of
√
Wj along the diagonal. So the joint posterior of V1:T ,W1:J , U , and γ0:T is

p(V1:T ,W1:J , U, γ0:T |y1:T ) ∝ U−aU−T/2−1 exp

[
− 1

U

(
bU +

1

2

T∑
t=1

(µt − µt−1)2

)]

× exp

−1

2

J∑
j=1

T∑
t=1

γ2
j,t

 exp

[
−1

2
(m0 − γ0)′C−1

0 (m0 − γ0)

]

×
J∏
j=1

V
−aVj−T/2−1

j exp

− 1

Vj

bVj +
1

2

T∑
t=1

(
yj,t − µt − γj,0 −

√
Wj

t∑
s=1

γj,s

)2


×
J∏
j=1

W
−aWj−1

j exp

[
− 1

Wj
bWj

]
.

This allows us to write the model as

yj,t = µt +
√
Wj

t∑
s=1

γj,s + γj,0 + vj,t

µt = µt−1 + ut (3.5)

where (v1:J,1:T , γ1:J,1:T , u1:T ) are mutually independent with γj,t ∼ N(0, 1), vj,t ∼ N(0, Vj),

and ut ∼ N(0, U) for j = 1, 2, . . . , J and t = 1, 2, . . . , T . The full conditional of γ0:T is a bit

more complicated than that of θ0:T , but we can just use the MCFA to draw from θ0:T ’s full

conditional and transform to γ0:T . The full conditional of (V1:J ,W1:J , U) is

p(V1:T ,W1:J , U |γ0:T , y1:T ) = p(U |γ0:T , y1:T )
J∏
j=1

p(Vj ,Wj |γ0:T , y1:T ).
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Here p(U |γ0:T , y1:T ) = p(U |θ0:T , y1:T ), i.e. the same inverse gamma distribution as when we

conditioned on θ0:T . However, p(Vj ,Wj |γ0:T , y1:T ) is complicated and difficult to sample from

efficiently. Instead of drawing Vj and Wj jointly, we draw from their full conditionals. It turns

out that Vj |Wj , γ0:T , y1:T ∼ IG(ãVj , b̃Vj ), which is the same as when we conditioned on θ0:T .

The full conditional density is of Wj is still rather complicated:

p(Wj |Vj , γ0:T , y1:T ) ∝W
−aWj−1

j exp

[
−bWj

1

Wj
+ cWj

√
Wj − dWjWj

]
where

cWj =

∑T
t=1(yj,t − µt − γj,0)

∑t
s=1 γj,s

Vj
∈ < , dWj =

∑T
t=1

(∑t
s=1 γj,s

)2
2Vj

> 0.

The double summations in cWj and dWj are one consequence of the model no longer having the

Markov property, which can easily be seen from (3.5). These summations can be expensive for

large datasets, though in our experience this is typically not the most important computational

bottleneck. In any case the summations can be attained much more efficiently via paralleliza-

tion, especially using a GPU. In order to sample from this density, we follow Simpson et al.

(2014) (Appendix E) and use an adaptive rejection sampling approach (Gilks and Wild, 1992)

when it is log concave, and otherwise we use a Cauchy approximation in a rejection sampling

scheme for the density of log(Wj).

Now we need to characterize the full conditionals given ψ0:T . The Jacobian matrix of the

transformation from θj,0:T to ψj,0:T is diagonal with a one and T copies of
√
Vj along the

diagonal. So the joint posterior of V1:T ,W1:J , U , and ψ0:T is

p(V1:T ,W1:J , U, ψ0:T |y1:T ) ∝ U−aU−T/2−1 exp

[
− 1

U

(
bU +

1

2

T∑
t=1

(µt − µt−1)2

)]

× exp

−1

2

J∑
j=1

T∑
t=1

ψ2
j,t

 exp

[
−1

2
(m0 − ψ0)′C−1

0 (m0 − ψ0)

]

×
J∏
j=1

W
−aWj−T/2−1

j exp

[
− 1

Wj

(
bWj +

1

2

T∑
t=1

(
∆yj,t −∆µt −

√
Vj∆ψj,t

)2
)]

×
J∏
j=1

V
−aVj−1

j exp

[
− 1

Vj
bVj

]
where we define ∆xj,t = xj,t − xj,t−1 for t = 2, 3, . . . , T and ∆xj,1 = xj,1 for any variable xj,t

except in the case of xj,t = yj,t where we define ∆yj,1 = yj,1 − ψj,0. This allows us to write the
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model as

yj,t = yj,t−1 +
√
Vj∆ψj,t + ut + wj,t (3.6)

where we define yj,0 = (
√
Vj−1)ψj,0 and where (w1:J,1:T , ψ1:J,1:T , u1:T ) are mutually independent

with ψj,t ∼ N(0, 1), wj,t ∼ N(0,Wj), and ut ∼ N(0, U) for j = 1, 2, . . . , J and t = 1, 2, . . . , T .

While the model is no longer a statespace model under this parameterization, it can be viewed as

a statespace model for the ∆yj,t’s with latent states ∆ψj,t’s and ut = ∆µt so long as care is taken

in defining the initial values of the data and states. We did not explore this parameterization

mainly because the scaled disturbances and scaled errors are natural opposites in the sense that

they tend to yield efficient DA algorithms in opposite ends of the parameter space (Simpson

et al., 2014), and as such are desirable candidates for interweaving.

Similar to the scaled disturbances case, we have

p(V1:T ,W1:J , U |ψ0:T , y1:T ) = p(U |ψ0:T , y1:T )
J∏
j=1

p(Vj ,Wj |ψ0:T , y1:T ).

Once again p(U |ψ0:T , y1:T ) = p(U |θ0:T , y1:T ), which is the same inverse gamma draw. In fact,

the parameters ãU and b̃U do not change from the γ step to the ψ step, so the second draw of U is

redundant and can be removed from the algorithm. The conditional density p(Vj ,Wj |ψ0:T , y1:T )

is once again complicated and has the same form as p(Wj , Vj |γ0:T , y1:T ), i.e. it switches the po-

sitions of Vj and Wj . So again we draw Vj and Wj in separate Gibbs steps, and Wj |Vj , ψ0:T , y1:T

has the same inverse gamma density as Wj |θ0:T , y1:T . The density of Vj |Wj , ψ0:T , y1:T has the

form

p(Vj |Wjψ0:T , y1:T ) ∝ V
−aVj−1

j exp

[
−bVj

1

Vj
+ cVj

√
Vj − dVjVj

]
where

cVj =

∑T
t=1 ∆ψj,t(∆yj,t −∆µt)

Wj
∈ < , dVj =

∑T
t=1(∆ψj,t)

2

2Wj
> 0.

This density has the same form as p(Wj |Vj , γ0:T , y1:T ) so the same rejection sampling strategy

can be used to sample from it.

Finally we can write the GIS algorithm as follows:
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1. Draw θ0:T ∼ N(Ω−1ω,Ω−1) using the MCFA.

2. Draw U ∼ IG(ãU , b̃U ).

3. For j = 1, 2, . . . , J :

(a) Draw Vj ∼ IG(ãVj , b̃Vj )

(b) Transform θj,0:T → γj,0:T and draw Wj ∼ p(Wj |Vj , γ0:T , y1:T ).

(c) Transform γj,0:T → ψj,0:T and draw Vj ∼ p(Vj |Wj , ψ0:T , y1:T ).

(d) Draw Wj ∼ IG(ãWj , b̃Wj ).

Since (U, V1, . . . , VJ ,W1, . . . ,WJ) are conditionally independent in the posterior no matter

which of the DAs we use, Step 3 can be parallelized and step 2 can come before or after

step 3, though we did not experiment with these possibilities. Steps 3.b and 3.c can both be

accomplished using the rejection sampling method described from Appendix E of Simpson et al.

(2014), briefly described above. Note that the transformation from γj,0:T → ψj,0:T is defined as

ψj,t = (yj,t − µt −
√
W j

∑t
s=1 γj,s − γj,0)/

√
Vj for j = 1, 2, . . . , J and t = 1, 2, . . . , T .

In (3.5) and (3.6) it is apparent that using the scaled disturbances or the scaled errors, the

model no longer has the Markov property. This is undesirable for computational reasons — it

causes the double summations in the definitions of cWi and dWi and increases the computational

cost associated with drawing the latent states — but the cost is worthwhile for convergence and

mixing because the parameterizations are natural opposites in a particular sense. According to

both theorem 1 and theorem 2 of Yu and Meng (2011), the convergence rate of an interweaving

algorithm is faster when the convergence rate of the fastest underlying DA algorithm is faster,

so in their words it is desirable to seek a “beauty and the beast” pair of DAs where when one

DA algorithm is bad the other is good and vice-versa. Reference Simpson et al. (2014) showed

in the local level model that the scaled disturbances and scaled errors yield DA algorithms

which are efficient in opposite ends of the parameter space so that they exhibit precisely this

“beauty and the beast” behavior.

It is also possible to transform the µt’s in an interweaving approach. The problem becomes

what two parameterizations to use. The scaled disturbances and the scaled errors make a
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natural pair because they work well in opposite ends of the parameter space which, in turn,

seems to be driven by one being a data level reparameterization and the other a latent state

level reparameterization. The scaled version of the µt’s would still be a latent state level

parameterization, and there is no clear data level reparameterization which corresponds to

them. This is a consequence of the model having a higher dimensional latent state than data,

though one method to overcome this issue that Simpson et al. (2014) mentions is via additional

augmentation — that is define missing data on the data level so that the full data, consisting

of the observed and missing data, has the same dimension as the latent state. We sidestep

this issue by leaving the µt’s untransformed through the algorithm, though there are potential

gains to be made by experimenting with reparameterizing this component of the DA.

3.5 Results

We fit the model in R using both MCMC algorithms, running five chains for each algorithm

at diverse starting points for 20, 000 iterations per chain. For both algorithms, convergence

appeared to be attained for all parameters in all chains in the first 5, 000 iterations according

to both trace plots and the Gelman-Rubin diagnostic (Brooks and Gelman, 1998), so we throw

away those initial draws as burn in. The GIS algorithm appeared to converge slightly slower

according to the Gelman-Rubin diagnostic for some of the parameters, though this difference

was not apparent in trace plots.

Table 3.1: Effective sample size (neff ) and time in seconds per 1, 000 effective draws (Time)
for each MCMC algorithm computed after burn in for all chains. Actual sample size is 60, 000
for each algorithm.

V1 V2 V3 V4 V5 V6
DA neff 24633 20656 20558 18883 21003 24897
GIS neff 44894 43659 35400 43843 23364 40913
DA Time 3.08 3.68 3.70 4.02 3.62 3.05
GIS Time 4.85 4.98 6.15 4.96 9.31 5.32

U W1 W2 W3 W4 W5 W6

DA neff 14583 15072 18713 15137 10609 13228 29458
GIS neff 19571 23706 23560 22768 15051 17753 29729
DA Time 5.21 5.04 4.06 5.02 7.16 5.74 2.58
GIS Time 11.12 9.18 9.24 9.56 14.46 12.26 7.32
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There were, however, significant differences in mixing between the two algorithms. Table

3.1 contains the effective sample size, neff (Gelman et al., 2013), for each parameters as well as

the time in seconds to achieve an effective sample size of 1, 000 for each parameter, computed

for both MCMC algorithms using all 60, 000 post burn-in iterations. The GIS algorithm has

higher neff for all parameters. For some parameters, e.g. V5 and W6, this difference is rather

small. For others, such as V1 and V2, the GIS algorithm has an neff roughly twice as large as the

DA algorithm. In time per 1, 000 effective draws, however, the GIS algorithm under-performs

across the board. When evaluating these times, note that the algorithms were implemented in

R where the code was interpreted, not compiled. Absolute times may differ dramatically from

the times listed in Table 3.1 under different programming languages or based on whether the

code was interpreted or compiled, though relative times should be roughly comparable at least

for interpreted code from other languages. The steps to draw from p(Wj |Vj , γ0:T , y1:T ) and

p(Vj |Wj , ψ0:T , y1:T ) are the main culprits — they are often very expensive. As the number of

periods in the experiment increases, Simpson et al. (2014) found that in the local level model

the GIS algorithm looks stronger relative to the DA algorithm since GIS is able to use adaptive

rejection sampling more often and the relative advantage of the improved mixing becomes more

important, and we expect this to hold in our model. Similarly, a judicious choice of priors which

allows for easier full conditionals in the offending steps should result in a faster computational

times for GIS relative to the DA algorithm.

Table 3.2: Parameter estimates, including the posterior mean, posterior median, and a 95%
credible interval for each parameter.

Mean 50% 2.5% 97.5% Mean 50% 2.5% 97.5%

V1 0.144 0.136 0.070 0.263 W1 0.101 0.092 0.042 0.216

V2 0.086 0.080 0.040 0.163 W2 0.083 0.075 0.035 0.171

V3 0.116 0.106 0.045 0.248 W3 0.078 0.072 0.035 0.158

V4 0.102 0.095 0.046 0.196 W4 0.104 0.095 0.043 0.216

V5 0.208 0.196 0.075 0.415 W5 0.110 0.096 0.038 0.258

V6 0.162 0.153 0.077 0.296 W6 0.085 0.076 0.034 0.188

U 0.044 0.041 0.023 0.079

Table 3.2 contains the parameter estimates for the model. The treatment level variance

appears to be smaller than both the replication and observation level variances, suggesting
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Figure 3.1: Plots by replication of the observed logit efficiency (yj,t), posterior median latent
replication logit efficiency (φj,t), and posterior median latent treatment logit efficiency (µt).

that changes in logit efficiency over time are driven less by treatment level dynamics and

more by random noise and replication level dynamics. Figure 3.1 also contains plots of each

replication’s observed logit efficiency trajectory, each replication’s posterior median latent logit

efficiency trajectory, and the treatment wide posterior median latent efficiency trajectory. The

replication level latent logit efficiency follows the observed logit efficiency very closely in each

case — it is essentially a smoothed version of the observed logit efficiency. The treatment

latent logit efficiency follows the observed logit efficiencies of replications 2, 4, 5, and 6 fairly

closely, but replication 3 consistently under performs the treatment average while replication

1 consistently over performs, at least in the latter half of periods.

3.6 Conclusion

Reference Simpson et al. (2014) explored the interweaving algorithms of Yu and Meng

(2011) for DLMs, but only implemented them in the univariate local level model. We use their

approach in a model that can be represented as independent local level models conditional
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on a univariate sequence of latent states, or as a slightly more complicated DLM with J

dimensional data and J+1 dimensional state. This poses some problems with directly applying

the methods in Simpson et al. (2014), but we show that they are easily overcome. The resulting

sampler has similar convergence and improved mixing properties compared to the standard

data augmentation algorithm with this particular dataset. In terms of end user time required

to adequately characterize the posterior, the DA algorithm is a bit faster for this particular

problem despite worse mixing, but this is largely due to an inefficient rejection sampling step in

the interweaving algorithm that likely can be improved (Simpson et al., 2014). This step also

tends to become relatively more efficient in problems with more data as well as less important

relative to improved mixing so that the interweaving algorithm will eventually, with enough

data, outperform the DA algorithm (Simpson et al., 2014).
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CHAPTER 4. A SLIDING SCALE OF PARTIAL IDENTIFICATION:

WEAKENING PARTIAL IDENTIFICATION ASSUMPTIONS

FOR CREDIBILITY

A working paper

Abstract

The National School Lunch Program (NSLP) provides free or reduced-price meals to children

of households with low income. Evaluating the causal effectiveness of this program is diffi-

cult because of the missing counterfactual problem and misreporting of program participation.

Following previous work on this program, we introduce several new methods to account for

the missing counterfactual problem using a Bayesian treatment effects approach. We build

two endogenous selection models with a preponderance of unidentified parameters. To identify

these parameters, we construct credible prior distributions that use dependence between iden-

tified and unidentified parameters to learn about the unidentified parameters; e.g. by choosing

prior distributions that embody monotone treatment selection and similar assumptions. The

analysis is extended to allow for post-stratification by fitting each model on a subgroup in a

hierarchical structure with other subgroups.
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4.1 Introduction

The National School Lunch program (NSLP) provided free or reduced price lunches to more

than 31 million U.S. children each school day in 2012 at a cost of about $11.6 billion for fiscal

year 2012. Households which were under 130% of the poverty line received free school lunches

for their children, while households between 130% and 185% of the poverty line paid a small

price — 40 cents in 2001–2004, the period our data come from. Presumably this would result in

better health outcomes for children on the program, but the evidence is mixed. This is partly

because identifying relevant treatment effect parameters is difficult. First, the standard missing

counterfactual problem is present — we observe a household on the school lunch program or not,

but never both. Second, there is evidence that the treatment status of the household (whether

they are on the school lunch program or not) is underreported. Gundersen et al. (2012) attempt

to deal with both of these issues through partial identification. We focus purely on the the

missing counterfactual problem and construct several models in order to deal with this issue

within a Bayesian framework.

Each model works by defining a model for the data we wish we had, identifying param-

eters which are unidentified given the data we do have, then constructing a reasonable prior

that allows us to learn about unidentified parameters and in particular treatment effect pa-

rameters through what we learn about the identified parameters. These priors embody, e.g.,

the monotone treatment selection assumption (MTS), which bounds unidentified parameters

with respect to identified parameters. Learning takes place through these bounds even in the

Bayesian context, as in Manski (1999). There are well known problems with Bayesian inference

in partial identification problems from a frequentist point of view. In particular Bayesian cred-

ible intervals will have incorrect frequentist coverage (Moon and Schorfheide, 2012), though a

Bayesian approach can still be used to fit the reduced model using MCMC which then can be

used with the bounds in order to construct correct frequentist confidence intervals (Kline and

Tamer, 2013).

Our innovation within the Bayesian context is twofold. First, we construct priors that force

inequalities such as MTS to hold some proportion of the time. This proportion is unidentified
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and we will not to use the data to learn about it; rather, its purpose is to better represent our

uncertainty about the problem. It is not often the case that we truly believe that a moment

inequality holds with 100% certainty, so our prior should reflect that uncertainty. By combining

various reasonable moment inequalities for the problem with varying degrees of certainty in

models with differing levels of detail, we are able to construct a continuum of possible methods

for estimating treatment effect parameters.

Our second innovation is to fit these models by conditioning on various sub-populations and

shrinking the parameter estimates to a common mean. This allows us to compute treatment

effects parameters by post-stratifying in order to take into account mismatch between sample

and population. See Gelman and Little (1997), Gelman and Carlin (2001), and Park et al.

(2004) for discussion and examples of post-stratification in the Bayesian context.

4.2 The Modeling Framework

Suppose we have some treatment d ∈ {0, 1} and are interested in the treatment’s effect on

some binary response y. Then yi(d) ∈ {0, 1} is the potential response for observation i under

treatment condition d, i = 1, 2, · · · , N . Next, yi(.) can be thought of as a function that maps

the treatment applied to an outcome – either successful or unsuccessful. Let di denote the

actual treatment status for observation i. Note that yi(di) is observed, but yi(1 − di) is not.

This is the essence of the problem – we do not observe the missing counterfactual, yi(1−di) and

observational units (e.g. households) select into their treatment status based on unobservables,

so we cannot easily compare success rates among those who chose to go on the treatment and

those who did not. Let yi denote the observed response for observation i. Then

yi = yi(0) + di [yi(1)− yi(0)] = yi(0) + diTEi (4.1)

where TEi = yi(1)− yi(0) is the i’th observation’s treatment effect.

The most basic model we can write down in this context separates the potential out-

comes into four categories based on which scenario we are considering and which scenario

the observation actually entered into. This gives us five Bernoulli probabilities to estimate,

P (yi(a) = 1|di = b) for a, b ∈ {0, 1} and P (di = 1), and is the starting point for Gundersen
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et al. (2012). Similarly, we are not assuming that yi(0) and yi(1) are independent conditional on

di. It seems intuitive that household i’s potential outcome while on the treatment is related to

its potential outcome when not on the treatment, even conditional on the household’s treatment

choice. To take into account this dependence, we need to decompose P (yi(a) = 1|di = 1 − a)

into

P (yi(a) = 1|di = 1− a) =

P [yi(a) = 1|yi(1− a) = 0, di = 1− a]P [yi(1− a) = 0|di = 1− a]

+P [yi(a) = 1|yi(1− a) = 1, di = 1− a]P [yi(1− a) = 1|di = 1− a].

This gives us seven Bernoulli probabilities to estimate, except this time the draws are indepen-

dent within their categories:

pd = P (di = 1)

pa|a = P (yi(a) = 1|di = a)

qa|b = P (yi(a) = 1|yi(1− a) = b, di = 1− a)

for a, b ∈ {0, 1}. In other words, the model is

yi(1− a)|yi(a) = b, di = a
iid∼Ber(qa|b)

yi(a)|di = a
iid∼Ber(pa|a)

di
iid∼Ber(pd). (4.2)

We can write this model in an equivalent form using the multinomial distribution. Let

xi = yi(0) + 2yi(1) so that xi ∈ {1, 2, 3, 4}. Then we have

xi|di = d
iid∼Multinomial(p|d)

di
iid∼Ber(pd) (4.3)

where d ∈ {0, 1} and p|d = (p00|d, p01|d, p10|d, p11|d) with pab|d = P (yi(0) = a, yi(1) = b|di = d)

and a, b, d ∈ {0, 1}. Since p|d lives in the simplex it only contains three unknown parameters,

so that the model still contains a total of seven unknown parameters.
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The version of the model in (4.3) is more convenient for some purposes including MCMC

sampling, but the version in (4.2) is much more convenient for reasoning about identification.

We do not observe (di, yi(0), yi(1)), but rather (di, yi) with di defined in (4.1) and, as a result,

the parameters in the first line of (4.2) are unidentified – qa|b for a, b ∈ {0, 1}. The rest of

the parameters, pd, p0|0, and p1|1, are identified. Using (4.3), pd is again identified as well as

p0|0 = p00|0 + p01|0, p1|1 = p01|1 + p11|1, 1− p0|0 = p10|0 + p11|0, and 1− p1|1 = p00|1 + p10|1. Note

that the unidentified marginal probabilities can be written as

p0|1 = p1|1q0|1 + (1− p1|1)q0|0 = p10|1 + p11|1

and

p1|0 = p0|0q1|1 + (1− p0|0)q1|0 = p01|0 + p11|0.

4.3 Partial Identification of Mean Treatment Effects

To learn about the unidentified parameters in the model, we will use partial identification.

Crucially we are interested in identifying treatment effects parameters and not necessarily

every parameter in the model. While many assumptions will allow us to partially identify

mean treatment effect parameters, not all will identify the full distribution of these parameters.

Consider the full treatment effects distributions from the posterior predictive distribution. The

average treatment effect (ATE) distribution is the distribution of a new household’s treatment

effect, p(TEnew), and is a discrete distribution on {−1, 0, 1}. Similarly the average treatment

on the treatment (ATT) distribution is the distribution of a new household’s treatment effect

conditional on the household selecting the treatment, p(TEnew|dnew = 1), and is also a discrete

distribution on {−1, 0, 1}. Often we can make assumptions that partially identify the means of
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these distributions while not partially identifying the full distributions.

ATE = E[TEnew] = P (ynew(1) = 1)− P (ynew(0) = 1)

= p1|1pd + p1|0(1− pd)− p0|1pd − p0|0(1− pd)

= (p01|1 − p10|1)pd + (p01|0 − p10|0)(1− pd)

ATT = E[TEnew|dnew = 1] = P (ynew(1) = 1|dnew = 1)− P (ynew(0) = 1|dnew = 1)

= p1|1 − p0|1

= p01|1 − p10|1. (4.4)

The upshot is that we can leave the full model unidentified as long as we can identify p0|1

and p1|0 – if we can find a way to learn about these two parameters, we can learn about the

treatment effects parameters of interest.

The full distributions depend on the model parameters as follows:

P (TEnew = −1) = P (ynew(0) = 1, ynew(1) = 0)

= (1− p1|1)q0|1pd + p0|0(1− q1|0)(1− pd)

= p10|0(1− pd) + p10|1pd

P (TEnew = 0) = P (ynew(0) = 0, ynew(1) = 0) + P (ynew(0) = 1, ynew(1) = 1)

=
[
p1|1q0|1 + (1− p1|1)(1− q0|0)

]
pd +

[
p0|0q1|1 + (1− p0|0)(1− q1|0)

]
(1− pd)

= [p00|0 + p11|0](1− pd) + [p00|1 + p11|1]pd

P (TEnew = 1) = P (ynew(0) = 0, ynew(1) = 1)

= p1|1(1− q0|1)pd + (1− p0|0)q1|0(1− pd)

= p01|0(1− pd) + p01|1pd (4.5)
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and

P (TEnew = −1|dnew = 1) = P (ynew(0) = 1, ynew(1) = 0|dnew = 1)

= (1− p1|1)q0|1 = p10|1

P (TEnew = 0|dnew = 1) = P (ynew(0) = 0, ynew(1) = 0|dnew = 1) + P (ynew(0) = 1, ynew(1) = 1|dnew = 1)

= p1|1q0|1 + (1− p1|1)(1− q0|0) = p00|1 + p11|1

P (TEnew = 1|dnew = 1) = P (ynew(0) = 0, ynew(1) = 1|dnew = 1)

= p1|1(1− q0|1) = p01|1. (4.6)

To identify these parameters it is sufficient to identify each of the pab|ds, but it is not sufficient

to identify each of the pa|d’s. In this section, we will focus on identifying mean treatment effects

parameters though we will return to identifying treatment effects distributions in Section 4.4.

4.3.1 Monotone Treatment Selection

The monotone treatment selection (MTS) assumption partially identifies p0|1 and p1|0 by

assuming that p0|0 > p0|1 and p1|1 < p1|0. In other words, MTS assumes that when both types

of households are either on the treatment or off the treatment, households that chose to go on

the treatment are on average worse off than households that chose not to go on the treatment.

We can restate this assumption in terms of the pab|d’s as

p11|0 + p10|0 > p11|1 + p10|1

and

p11|0 + p01|0 > p11|1 + p01|1

which can be restated using the simplex constraint as

p00|0 + p01|0 < p00|1 + p01|1

and

p00|0 + p10|0 > p00|1 + p10|1
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This is sufficient to partially identify p0|1 & p1|0 and thus ATE & ATT , but not the full

ATE and ATT distributions – it does not allow us to learn about the pab|d’s without further

assumptions.

To translate MTS into the Bayesian framework, we need to translate the bounds into a prior

distribution on (p|0,p|1). For simplicity, initially suppose we are only interested in estimating

mean ATE and mean ATT, so all we need is a prior on (pd, p0|0, p0|1, p1|0, p1|1). The easy

way to do this is to assume a uniform prior subject to the MTS constraints, but we could

generalize slightly and assume that each parameter has a beta distribution subject to the MTS

constraints. This approach is natural, but skipping forward a little bit it will cause problems

for post-stratification when we try to construct a hierarchical version of the model. Suppose

we have data zi
iid∼ B(α, β). Then the posterior is p(α, β|z) ∝ 1

B(α,β)n exp [−αvα − βvβ] p(α, β)

where p(α, β) is the prior and vα & vβ are functions of z. The term involving the beta function

prevents any convenient conditionally conjugate form from showing up and furthermore will

sometimes be relatively expensive to evaluate every iteration of an MCMC algorithm. In

addition, the Dirichlet distribution is known to be a relatively inflexible model for parameters

that live in the simplex (Aitchison, 1986). These will be larger problems when we model the

pab|c’s in Section 4.4, but they still pose some difficulty here since the beta is a special case of

the Dirichlet.

In order to deal with this issue, we will use the approach of Gelman et al. (1996), also

discussed in Gelman (1995), that uses normal distributions properly normalized to obtain a

prior on the simplex. Specifically let θ = (pd, p0|0, p1|0, p0|1, p1|1) and λk
ind∼ N (µk, σ

2
k) for

k = 1, 2, . . . , 10. This distribution is transformed to the simplex by

θk =
eλ2k

eλ2k−1 + eλ2k

for k = 1, 2, . . . , 5. We will call this prior the normalized lognormal or NLN prior, denoted by

p ∼ NLN (µ,σ2) with µ = (µ1, µ2) and σ2 = (σ2
1, σ

2
2). The full set of λk’s is not identifiable

since we can add a constant to any pair without impacting any of the θk’s, but as long we

are only interested in the θk’s this causes no inferential problems. The normalized lognormal

prior causes each the distribution of each of the θk’s to depend on four parameters, providing
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a greater deal of flexibility. The relative values of both µ1 & µ2 and σ2
1 and σ2

2 control the

expected value of p, though in rather opaque ways, but Gelman (1995) shows how to use prior

information about the moments of the θk’s to choose the µk’s and σk’s to match. We can

easily model each of those parameters hierarchically across groups as well using conditionally

conjugate normal and inverse gamma distributions, which we will do in Section 4.5. The cost is

that the full conditional distribution of each of the λk’s is complicated. In Section 4.6 we show

how to draw from these full conditionals using a random walk Metropolis step which works

fairly well.

So the unconstrained prior on θ = (pd, p0|0, p1|0, p0|1, p1|1) is

pUN (θ) = NLN (pd;µ1:2,σ
2
1:2)NLN (p0|0;µ3:4,σ

2
3:4)NLN (p1|0;µ5:6,σ

2
5:6) (4.7)

×NLN (p0|1;µ7:8,σ
2
7:8)NLN (p1|1;µ9:10,σ

2
9:10)

where NLN (p;µ,σ2) is the pdf of the normalized lognormal distribution. The MTS prior uses

the same unconstrained prior except restricted to the space where MTS holds. To wit:

pMTS(θ) ∝ NLN (pd;µ1:2,σ
2
1:2)NLN (p0|0;µ3:4,σ

2
3:4)NLN (p1|0;µ5:6,σ

2
5:6) (4.8)

×NLN (p0|1;µ7:8,σ
2
7:8)NLN (p1|1;µ9:10,σ

2
9:10)1

{
p0|0 < p0|1

}
1
{
p1|0 < p1|1

}
.

The full conditionals of the resulting posterior are complicated by the MTS constraints, but in

Section 4.6 we show that the constraint on θk conditional on θ−k is simply an interval function

of θ−k, (L,U) where −∞ ≤ L < U ≤ ∞.

4.3.2 Mean Monotone Treatment Response

Another popular identifying assumption, Monotone Treatment Response (MTR) says that

yi(1) ≥ yi(0) for all i Manski (1999). This assumption is rather strong since it rules out

the possibility that the treatment hurts any recipients. A weakening of MTR is possible

that we might call mean monotone treatment response or MMTR. There are several ways

we could translate this statement into mathematics. The first way translates it literally and

says E[yi(1)] > E[yi(0)], i.e. P (yi(1) = 1) > P (yi(0) = 1). The second way says that

E[yi(1)|di = d] > E[yi(0)|di = d], i.e. P (yi(1) = 1|di = d) > P (yi(0) = 1|di = d) for all

d =∈ {0, 1}. We will consider each version of this assumption in turn.
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Version 1 of MMTR says P (yi(1) = 1) > P (yi(0) = 1), which is equivalent to

(p01|0 + p11|0)(1− pd) + (p01|1 + p11|1)pd > (p10|0 + p11|0)(1− pd) + (p10|1 + p11|1)pd

⇐⇒ p01|0(1− pd) + p01|1pd > p10|0(1− pd) + p10|1pd.

This assumption is a bit strange since it does not imply that, conditional on a household’s

treatment selection, the household is more likely to have a successful outcome while on the

treatment than while off the treatment. So while it is a strict translation of “mean monotone

treatment response” into mathematics, it does not faithfully capture the spirit of the idea.

Version 2 of MMTR says P (yi(1) = 1|di = d) > P (yi(0) = 1|di = d) for d ∈ {0, 1}, which

is equivalent to p1|0 > p0|0 and p1|1 > p0|1, or equivalently p01|0 > p10|0 and p01|1 > p10|1. Thus

version 2 of MMTR says that a given household is more likely to be successful (food secure)

under the treatment and unsuccessful (food insecure) off of it than unsuccessful under the

treatment and successful off of it. In particular, it implies version 1 of MMTR and furthermore,

MTR =⇒ MMTR v2 =⇒ MMTR v1. Both versions of MMTR can be combined with MTS

in order to buy additional identifying power, but we will use version 2.

To translate MMTR into a prior distribution, we will again use the unconstrained prior

truncated to satisfy the MMTR constraints.

pMMTR(θ) ∝ NLN (pd;µ1:2,σ
2
1:2)NLN (p0|0;µ3:4,σ

2
3:4)NLN (p1|0;µ5:6,σ

2
5:6) (4.9)

×NLN (p0|1;µ7:8,σ
2
7:8)NLN (p1|1;µ9:10,σ

2
9:10)1

{
p0|0 < p1|0

}
1
{
p0|1 < p1|1

}
.

It turns out that the MTS and MMTR constraints are orthogonal, so we can impose both at

the same time in order to further increase identification power. The combined inequalities state

that p0|0 < p1|0 < p1|1 and p0|0 < p0|1 < p1|1, yielding the MTS+MMTR prior.

pMTS+MMTR(θ) ∝ NLN (pd;µ1:2,σ
2
1:2)NLN (p0|0;µ3:4,σ

2
3:4)NLN (p1|0;µ5:6,σ

2
5:6) (4.10)

×NLN (p0|1;µ7:8,σ
2
7:8)NLN (p1|1;µ9:10,σ

2
9:10)1

{
p0|0 < p1|0 < p1|1

}
1
{
p0|0 < p0|1 < p1|1

}
.

4.3.3 Probable MTS, MMTR, and MTS+MMTR

One issue with MTS, MMTR, and MTS+MMTR is that they assume the relevant bounds

hold with 100% certainty, but we do not necessarily believe this – more likely they hold with
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a high probability. We use this idea to develop the probable version of each of the above

assumptions – PMTS, PMMTR, and PMTS+PMMTR. Strict MTS assumes that p0|0 > p0|1

and p1|0 > p1|1, but instead we will assume that they hold with some probability η and that

the parameters are unconstrained with probability 1 − η. So the PMTS prior is a mixture of

the MTS and UN (unconstrained) priors, i.e.

pPMTS(θ,m) = (1− η)1−mpUN (θ) + ηmpMTS(θ)

where m = 1 indicates that MTS holds and η = P (MTS holds). Marginalizing out m yields

pPMTS(θ) = (1− η)pUN (θ) + ηpMTS(θ). (4.11)

PMTS is a generalization of MTS since η = 1 yields MTS and η = 0 yields UN. This

prior provides a sliding scale of assumptions about the success rate of individuals who chose

the treatment compared with the success rate of individuals who did not choose the treatment

while on the other hand MTS dogmatically sets η = 1 – it says that we are 100% certain

that individuals who chose not to go on the treatment have a higher success rate on average

than individuals who chose to go on the treatment. When MTS is plausible but we have some

misgivings, shrinking η away from one will allow us to obtain more credible estimates of p0|1

and p1|0 as well as mean ATE and mean ATT . It might seem suspicious that under PMTS,

inference for the parameters of interest is highly dependent on η, and η cannot be estimated

from the data. This is true, of course, but MTS falls prey to the same criticism – inference will

always be highly sensitive to these sorts of identifying assumptions. The key is to represent our

uncertainty faithfully and to be transparent about where our analysis is dependent on these

sorts of choices.

Analogous to PMTS we can define PMMTR, but nothing is meaningfully different. So we

will actually define PMTS+PMMTR first and see that PMTS and PMMTR are special cases.

Let ε = P (MMTR holds) and assume that whether MTS holds and whether MMTR holds are

independent. Then the PMTS+PMMTR prior is

pPMTS+PMMTR(θ) = (1− η)(1− ε)pUN (θ) + η(1− ε)pMTS(θ)

+ (1− η)εpMMTR(θ) + ηεpMTS+MMTR(θ). (4.12)
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This gives us two sliding scales of partial identification that we can set independently according

to the credibility of the corresponding assumptions for the problem at hand. Here η = 0 and

ε = 1 yields the MMTR prior while η = 1 and ε = 0 yields the MTS prior. When η = ε = 1,

we have the MTS+MMTR prior.

When we constructed the PMTS prior, we assumed that when MTS did not hold the prior

support was the entire unconstrained space. A reasonable alternative is to restrict the prior

support to the region of the space that contradicts MTS. This is the strategy that Bollinger

and Hasselt (2009) used for constructing priors that partially identify measurement error mod-

els. Theoretically we could do this for both the MTS and MMTR assumptions, but it is

not as straightforward in our context. For example, the MTS assumption consists of two in-

equalities and when MTS is false, one or both inequalities is inverted giving three possibilities

for not-MTS. With MTS+MMTR the number of inequalities increases to four yielding seven

possibilities for not-MTS+MMTR. The upshot is that computing, e.g., θk’s conditional sup-

port given θ−k under not-MTS+MMTR will be more complicated. The complication is easily

surmountable, but it is not clear what we gain.

4.4 Partial Identification of the Treatment Effect Distributions

In this section we specify priors on p|0 = (p00|0, p01|0, p10|0, p11|0) and p|1 = (p00|1, p01|1, p10|1, p11|1)

as well as pd using a variety of the assumptions discussed above. This will allow us to learn

more about the full treatment effects distributions – in particular more than just the mean.

We will start with the NLN prior – strictly speaking this is a prior on the simplex, so when

we write p ∼ NLN (µ,σ2) for a scalar p, implicitly the distribution is on (p, 1 − p) with

1 − p = eλ1/(eλ1 + eλ2). When p is not a scalar, we will take it to satisfy the simplex con-

straints and require µ & σ2 to have the same dimension as p. So for the unconstrained prior

let φ = (pd,p|0,p|1) and assume

pUN (φ) = NLN (pd;µ1:2,σ
2
1:2)NLN (p|0;µ3:6,σ

2
3:6)NLN (p|1;µ7:10,σ

2
7:10). (4.13)

It turns out that this prior implicitly imposes dependence between p0|0 and p1|0 as well as

between p0|1 and p1|1. The dependence comes through the definition of the probabilities and
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can be more easily seen with independent Dirichlet priors on p|0 and p|1. On the one hand this

dependence is disturbing – it gives us partial identification before we impose any constraints.

But this dependence is actually very natural and based on the structure of the problem –

if we learn about p0|0 we should learn about p1|0 because of their common component p11|0.

This relationship is one way to derive Manski (1999)’s worst case bounds for both mean ATE

and mean ATT. From the definitions of p0|0, p1|0, p0|1, and p1|1 we obtain the following set of

inequalities:

p10|0 < p0|0 p01|0 < 1− p0|0 p00|0 < 1− p0|0 p11|0 < p0|0

p10|1 < 1− p1|1 p01|1 < p1|1 p00|1 < 1− p1|1 p11|1 < p1|1.

In other words, the bounds are informative on each of the underlying probabilities of the basic

model. This leads to the follow set of inequalities

−p0|0 < p01|0 − p10|0 < (1− p0|0)

−(1− p1|1) < p01|1 − p10|1 < p1|1

which then implies that

−(1− p1|1)pd − p0|0(1− pd) < ATE < p1|1pd + (1− p0|0)(1− pd)

−(1− p1|1) < ATT < p1|1

which are just the worst case bounds from Manski (1999). We can see how the bounds impact

the full distribution as well:

P (TEnew = −1) < p0|0(1− pd) + (1− p1|1)pd, P (TEnew = 1) < (1− p0|0)(1− pd) + p1|1pd

P (TEnew = −1|dnew = 1) < 1− p1|1, P (TEnew = 1|dnew = 1) < p1|1.

However, there are no informative constraints on P (TEnew = 0) or P (TEnew = 0|d = 1) under

any circumstances – they are both always sharply bounded between 0 and 1. So the only

way we can learn about the treatment effects distribution with the unconstrained prior is by

truncating the lower part of the distribution or the upper part — which then pulls the mean

up or down — but we never learn about the probability of no effect.
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The MTS, MMTR, and MTS+MMTR versions of this prior are constructed analogously to

the previous section:

pMTS(φ) ∝ pUN (φ)1
{
p10|0 + p11|0 > p10|1 + p11|1

}
1
{
p01|0 + p11|0 > p01|1 + p11|1

}
(4.14)

pMMTR(φ) ∝ pUN (φ)1
{
p01|0 > p10|0

}
1
{
p01|1 > p10|1

}
(4.15)

pMTS+MMTR(φ) ∝ pMTS(φ)1
{
p01|0 > p10|0

}
1
{
p01|1 > p10|1

}
. (4.16)

Each of these priors will allow us to learn more about the ATE and ATT distributions than

their mean, though none of them identifies the full distributions.

4.4.1 Monotone Treatment Response

By specifying priors on the pab|c’s we are now able to apply MTR. Recall that MTR specifies

yi(1) ≥ yi(0) for all i; in other words households cannot be harmed by going on the treatment.

Equivalently in terms of the model parameters we have p10|0 = p10|1 = 0. This further implies

p0|0 = p10|0 + p11|0 = p11|0

and

p1|1 = p01|1 + p11|1 = 1− p00|1 − p10|1 = 1− p00|1

which identifies p11|0 and p00|1. This assumption is not mutually exclusive with MTS either –

they can be combined to buy even more identification power.

The next question is whether we can learn about the full distribution of treatment ef-

fect parameters using MTR. For both the ATT and ATE distributions in (4.5) and (4.6),

P (TEnew = −1) = 0 by assumption using MTR. Now consider just the ATT distribution in

(4.6). Since p00|1 = 1 − p1|1, we are able to learn about P (TEnew = 1|dnew = 1). This also

allows us to learn about P (TEnew = 1|dnew = 1) since MTR ensures that the ATT distribution

is a binary distribution on {−1, 1} and thus is completely determined by a single parameter.

The logic is the same for the ATE distribution in (4.5) except we also need to use the fact that

p11|0 = p0|0 according to MTR.
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The MTR prior is the unconstrained prior modified so that p10|0 = p10|1 = 0 or, equivalently

it sets µ4 = µ8 = −∞. So the density is

pMTR(φ) = NLN (pd;µ1:2,σ
2
1:2)NLN (p|0;µ3:6,σ

2
3:6)NLN (p|1;µ7:10,σ

2
7:10) (4.17)

with µ4 = µ8 = −∞. The MTS+MTR density is then

pMTS+MTR(φ) ∝ pMTR(φ)1
{
p10|0 + p11|0 > p10|1 + p11|1

}
1
{
p01|0 + p11|0 > p01|1 + p11|1

}
.

(4.18)

MTR+MMTR is redundant with MTR since MTR implies MMTR, so we have exhausted all

possible combinations of the three basic partial identification assumptions.

4.4.2 PMTS+PMMTR+PMTR

Now that we have set up the prior for each of the six possible assumptions we can make –

unconstrained, MTS, MTR, MMTR, MTS + MMTR, and MTS + MTR – we can put sliding

scales on each of these assumptions to create the PMTS+PMTR+PMMTR prior. As before,

let η = P (MTS) and ε = P (MMTR). Further, define δ = P (MTR|MMTR). Then

pPMTS+PMMTR+PMTR(φ) = (1− η)(1− ε)pUN (φ) + (1− η)ε(1− δ)pMMTR(φ)

+ (1− η)εδpMTR(φ) + η(1− ε)pMTS(φ)

+ ηε(1− δ)pMTS+MMTR(φ) + ηεδpMTS+MTR(φ). (4.19)

The main wrinkle with choosing (η, ε, δ) is that δ is a conditional probability. So this effectively

gives us three sliding scales to adjust on the prior to determine how strongly we assert the

identifying assumptions.

4.5 Post-stratification through Hierarchical Modeling

The previous analyses can be applied to an entire population, though often a representative

sample from that population is not available. In practice applied research typicallys start with a

presumed random sample and then condition their analysis on subsamples. We can do the same

— we can fit each of the above models to separate sub-populations and then post-stratify by
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simulating new households from the population distribution and simulating those households’

treatment effects from the predictive distribution of the model. Analogous to fixed effects, we

can fit a model to each of these sub-populations completely separately but this throws away

information. A hierarchical model allows information from one sub-population to spill over

to another sub-population’s parameters, capturing the intuition that each sub-population’s

parameters are similar to each other.

We will set up the hierarchical model using φ = (pd,p|0,p|1), though for the model with θ

everything is analogous. Let g = 1, 2, . . . , G denote each sub-population or subgroup, and let

φg denote that group’s probabilities and φkg denote the k’th element of φg. Using the LLN

prior on φg for g = 1, 2, . . . , G – potentially with constraints – we have

φ1g =
eλ2g

eλ1g + eλ2g

and for k = 3, 4, 5, 6

φkg =
eλkg∑4
j=1 e

λjg
& φk+4,g =

eλk+4,g∑4
j=1 e

λj+4,g

with

λg
ind∼ N (µ,Σ)1{λg ∈ A}

for g = 1, 2, . . . , G where we define Σ = diag(σ2). So now each λg comes from the same

distribution which depends on the parameters µ and σ2. Here A ⊆ <10G represents the subset

of λ-space we are restricted to by whatever identifying assumptions we use, e.g. from MTS

or MTS+MMTR. Each subgroup has the same set of constraints applied to its parameters,

and this will make applying the probable version the priors straightforward. In that case each

subgroup gets the same constraints obtained from the same set of sliding scales (η, ε, and δ).

Each group could have its own set of sliding scales and therefore its own set of constraints, but

this increases the number of sliding scales that need to be set a priori to 3G. We will focus on

the case where each group uses the same constraint.
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Now we complete the model with a standard prior on the parameters of a scalar normal

(Bernardo and Smith, 2009):

µk|σ2 ind∼ N
(
µ̄k,

σ2
k

Skγk

)
σ2
k
ind∼ IG

(νk
2
,
νk
2
Sk

)
for k = 1, 2, . . . , 10. Under normal circumstances the inverse gamma prior on σ2

k is highly

informative and can have an undue influence on inference (Gelman, 2006), especially on the

variance in question. In this case the variances are part of an additional set of parameters in

order to create a more flexible distribution on the simplex and to allow for higher level modeling.

The inverse gamma prior reduces the flexibility a bit, but not much in our experience in this

application. Furthermore, the constraining properties of the inverse gamma prior are actually

desirable since we need these variances to be somewhat constrained to be near zero for two

reasons. First, for large variances the MCMC algorithm will have problems for the µ’s since

they are unidentified and their prior is so diffuse – in the non-hierarchical case this means that

we have to set σ2
k small or at least not much larger than one. Second, for a diffuse enough

prior on σ2 we find that no pooling happens at the level of the pab|c’s – for example with a

Half-t prior on each of the σk’s with a degrees of freedom near 10, the identified parameters,

p0|0,g, p1|1,g, and pd,g, are essentially estimated to be the empirically observed probabilities

within those groups. This is not the case for large degrees of freedom (> 100) or for the inverse

gamma prior. The inverse gamma prior combined with the normal prior on µk also has the

benefit of being jointly conditionally conjugate to keep MCMC simple and fast.

To fully specify the prior we need to specify µ̄k, γk, νk, and Sk for k = 1, 2, . . . , 10, so

40 parameters. Shrinkage is controlled by Sk – the smaller Sk is, the more each group’s

probabilities are shrunk towards each other. Shrinkage towards a prior set of probabilities is

controlled by γk, and the reason Sk appears in the prior for µk is to ensure that γk alone

controls this sort of shrinkage rather than both γk and Sk. Larger values of γk cause shrinkage

of the estimated probabilities to the prior set of probabilities. The prior set of probabilities is

controlled in a complicated fashion by all of the hyperparameters, but primarily by the µ̄k’s.

These hyperparameters are only identified up to an additive constant even if we could directly
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observe the λkg’s, so only relative values matter. Finally νk can manipulate shrinkage to some

extent as well. With γk = 1, νk = 1, µ̄k = 0, and Sk = 1 for all i and a modest amount of

data in each subgroup – n = 500 to n = 1000 – each group’s set of probabilities is essentially

estimated independently of the prior and the other groups. As Sk decreases these probabilities

are shrunk back towards each other and as γk increases they are shrunk towards a prior set

of probabilities – a factor of 100 or so is enough to see meaningful changes in the estimates

in both cases when the number of observations per group is around 1,000. To choose these

hyperparameters more intelligently, the method of Gelman (1995) can also be applied.

4.6 MCMC

We will construct two MCMC algorithms here – one for the model using θ and one for

the model using φ – then extend both algorithms to deal with the hierarchical version of both

models. Both algorithms we construct assume a fixed set of constraints are used. In order to

account for probable constraints the algorithm should be run for each set of fixed constraints

allowed by the prior.

We will start with the model using θ = (pd, p0|0, p1|0, p0|1, p1|1). The posterior for this model

in terms of the λ’s used in the NLN prior is

p(λ|d,y) ∝ eλ1Fdeλ2Td

(eλ1 + eλ2)N
eλ3F0eλ4T0

(eλ3 + eλ4)Fd
eλ9F1eλ10T1

(eλ9 + eλ10)Td
exp

[
−1

2

10∑
k=1

(λk − µk)2

σ2
k

]
1{λ ∈ A}

(4.20)

where Td =
∑

i di, Fd = N − Td, T0 =
∑

i(1 − di)yi, F0 = Fd − T0, T1 =
∑

i diyi, and

F1 = Td−T1 are the observed counts in each of the relevant categories. Here A ⊆ <10 is the set

λ is constrained to lie in by the prior, determined by which of the MTS and MMTR constraints

hold. These constraints in terms of the λ’s are

MTS: λ7 + λ4 > λ3 + λ8 & λ9 + λ6 > λ5 + λ10

MMTR: λ3 + λ6 > λ4 + λ5 & λ7 + λ10 > λ8 + λ9.

The full conditional density of each λk has the form

p∗(λk|λ−k,d,y) ∝ eλkTk

(eλk + Ck)Nk
e
− 1

2σ2
k

(λk−µk)2

1{λk ∈ (ak, bk)} (4.21)
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where Tk & Nk are functions of y and Ck, ak, and bk are functions of λ−k with −∞ ≤ ak <

bk ≤ ∞. The functions ak and bk come directly from the constraint we are assuming, e.g. MTS

or MMTR or both or neither. When Tk = Nk = 0, e.g. for λ4, this distribution is simply a

scalar truncated normal. There are several well known algorithms for efficiently drawing from

a truncated normal distribution, e.g. Geweke (1991). When Tk or Nk is nonzero the density is

nonstandard and difficult to sample from. Instead we use a random walk Metropolis-Hastings

step as follows:

1. Simulate λ
(∗)
k ∼ N(ak,bk)(λ

(t)
k , u

2
k).

2. Compute the acceptance ratio

R =
p∗(λ

(∗)
k |λ−k,y)

p∗(λ
(t)
k |λ−k,y)

Φ

(
bk−λ

(t)
k

uk

)
− Φ

(
ak−λ

(t)
k

uk

)
Φ

(
bk−λ

(∗)
k

uk

)
− Φ

(
ak−λ

(∗)
k

uk

)
and set λ

(t+1)
k = λ

(∗)
k with probability min(1, R) and λ

(t+1)
k = λ

(t)
k with probability 1 −

min(1, R).

Here Φ(.) is the standard normal cdf and uk is a tuning parameter. In step 1 the proposal, λ
(∗)
k ,

is simulated from a truncated normal distribution instead of an unconstrained normal, which

is why this is not simply a random walk Metropolis step. While this is not strictly speaking

a random walk Metropolis step we can still adaptively set the value of uk during the burn in

period using the ideas in Roberts and Rosenthal (2009) to achieve a target acceptance rate of

about 0.44. The full algorithm for the single group model using θ is then a Gibbs sampler that

consists of six Metropolis-Hastings steps for λ1, λ2, λ3, λ4, λ9, and λ10 using the algorithm in

(4.6), and four steps where we draw from a scalar truncated normal.

The MCMC algorithm for the single group model using φ = (pd,p|0,p|1) is similar but

slightly more complicated. Here we use a data augmentation algorithm (Tanner and Wong,

1987) where we draw the missing counterfactual for each observation. So the full set of aug-

mented data – both observed and missing data – is (d,y(0),y(1)). The full augmented data
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posterior can be written as

p(λ,y(1− d)|d,y(d)) ∝ eλ1T1eλ2T2

(eλ1 + eλ2)T1+T2

eλ3T3eλ4T4eλ5T5eλ6T6

(eλ3 + eλ4 + eλ5 + eλ6)
T3+T4+T5+T6

× eλ7T7eλ8T8eλ9T9eλ10T10

(eλ7 + eλ8 + eλ9 + eλ10)
T7+T8+T9+T10

exp

[
−1

2

10∑
k=1

(λk − µk)2

σ2
k

]
1{λ ∈ A} (4.22)

where we define

T1 = #(di = 0), T2 = #(di = 1),

T3 = #(di = 0, yi(0) = 0, yi(1) = 0), T4 = #(di = 0, yi(0) = 1, yi(1) = 0),

T5 = #(di = 0, yi(0) = 0, yi(1) = 1), T6 = #(di = 0, yi(0) = 1, yi(1) = 1),

T7 = #(di = 1, yi(0) = 0, yi(1) = 0), T8 = #(di = 1, yi(0) = 1, yi(1) = 0),

T9 = #(di = 1, yi(0) = 0, yi(1) = 1), and T10 = #(di = 1, yi(0) = 1, yi(1) = 1)

and recall

φ1 =
eλ2

eλ1 + eλ2
,

for k = 2, 3, 4, 5

φk =
eλk+1∑6
j=3 e

λj
,

and for k = 6, 7, 8, 9

φk =
eλk+1∑10
j=7 e

λj
.

Here the MTS, MMTR, and MTR constraints in terms of the λ’s are

MTS: (eλ5 + eλ6)(eλ7 + eλ8) > (eλ9 + eλ10)(eλ3 + eλ4)

& (eλ4 + eλ6)(eλ7 + eλ9) > (eλ8 + eλ10)(eλ3 + eλ5)

MMTR: λ4 < λ5 & λ8 < λ9

MTR: λ4 = −∞ & λ8 = −∞.

In the first step of the algorithm we need to draw y(1 − d) conditional on φ so we can form

the Tk’s. Their full conditional density is

p(y(1− d)|φ,d,y(d)) =

n∏
i=1

p(yi(1− di)|φ, di, yi(di))
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where

p(yi(1)|φ, di = 0, yi(0) = yi) ∝
(
φ1−yi

2 φyi3

)1−yi(1) (
φ1−yi

4 φyi5

)yi(1)

and

p(yi(0)|φ, di = 1, yi(1) = yi) ∝
(
φ1−yi

7 φyi9

)1−yi(0) (
φ1−yi

8 φyi10

)yi(0)
.

So when di = 0, yi(0) = yi and

yi(1) ∼ Ber

(
φ1−yi

4 φyi5

φ1−yi
2 φyi3 + φ1−yi

4 φyi5

)

while when di = 1, yi(1) = yi and

yi(0) ∼ Ber

(
φ1−yi

8 φyi10

φ1−yi
7 φyi9 + φ1−yi

8 φyi10

)
.

From (4.22), the full conditional of each of the λk’s has the form in (4.21), so we can use the

algorithm in (4.6) for each λk step. Putting it all together, we first draw each yi(1− di) from

their full conditionals, independent across i, then we draw each λk conditional on the others

using the Metropolis-Hastings algorithm above (4.6).

In the hierarchical version of both models we need to make the same two changes. First, each

group g has its own λg which needs to be drawn in a separate set of Gibbs steps. Conditional

on µ and σ2, the λg’s are independent across g so this step can be parallelized. Second, we need

to draw µ and σ2 from their full conditional distribution. Since (µk, σ
2
k) is independent across

k in the prior, they are also independent across k in their conditional posterior. Furthermore,

the Normal-inverse Gamma prior on (µk, σ
2
k) is conditionally conjugate, so we can draw them

jointly as follows (Bernardo and Smith, 2009):

1. Draw σ2
k ∼ IG(âk, b̂k) where

âk =
νk +G

2
and b̂k =

1

2

(
νkSk + S2

λk
+
γkSkG(µ̄k − λ̄k)2

γkSk +G

)

2. Draw µk ∼ N (µ̂k, σ̂
2
k) where

µ̂k =
Gλ̄k + γkSkµ̄k
G+ γkSk

and σ̂2
k =

σ2
k

G+ γkSk
.



www.manaraa.com

103

Here λ̄k =
∑

g λkg/G and S2
λk

=
∑

g(λkg − λ̄k)2. This algorithm will work well as long as G,

the number of subgroups, is not too large. The number of Metropolis-Hastings steps required

in every iteration is 10G in both hierarchical models, so for a large number of groups this may

be costly. For example with about 2000 groups a single iteration of the algorithm may take as

long as a full second when programmed in R.

4.7 Analyzing the NSLP

Next we fit the models above to data from the national school lunch program. Our data come

from the 2001–2004 National Health and Nutrition Examination Survey (NHANES), conducted

by the National Center for Health Statistics, Centers for Disease Control (NCHS/CDC). The

NHANES uses surveys and physical examinations on a sample of about 5000 people per year,

half of which are children. Vulnerable groups are over-sampled. Detailed measures on a variety

of health related outcomes are included in the NHANES. For now, we restrict our attention to

2693 children in the sample who appear to be eligible to receive free or reduced price lunches

through the NSLP. This includes children ages 6 to 17 who reside in households with income less

than 185% of the federal poverty line and are reported to be attending schools that participate

in the NSLP. Parents also self report their participation in the school lunch program. We focus

on one outcome: food security. Food security is a binary variable (1 = food secure, 0 = food

insecure) that is measured using a series of 18 questions about food-related needs and resources

in the household such as “I worried whether our food would run out before we got money to buy

more.” The household is considered to be food insecure if the respondent answers affirmatively

to three or more of these questions.

Table 4.1 contains summary statistics for each of the key variables. About 77% of eligible

children in the sample reside in households taking advantage of the NSLP. About 58% of

recipients and 67% of non-recipients are food secure, so a naive comparison of households on

the the NSLP to households not on the NSLP would suggest that the NSLP actually decreases

food security. Note, however, that non-recipients appear to have higher income on average than

recipients.
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Table 4.1: Summary of key variables by National School Lunch Program participation. Note
that these statistics do take into account the sample weights.

Income-eligible children Recipients Non-recipients

Age in years 11.06 10.65 12.23

(3.3) (3.11) (3.56)

NSLP recipient 0.74 1 0

(0.44) (0) (0)

Ratio of income to the poverty line 0.98 0.92 1.16

(0.47) (0.45) (0.48)

Food secure household 0.64 0.6 0.74

(0.48) (0.49) (0.44)

To fit the model, we broke the dataset into six groups based on the ratio of their income to

the poverty line as follows: [0, 0.4], (0.4, 0.7], (0.7, 1], (1, 1.3], (1.3, 1.6], and (1.6, 1.85]. We fit

each model using θ and each model using φ with each fixed set of constraints, including with

no constraints. Once for θ and once for φ, we fit a model with probabilistic constraints. In

the probabilistic constraint model for θ, we set η = P (MTS) = 0.8 and ε = P (MMTR) = 0.5.

We used these same values for η and ε in the probabilistic model for φ and in addition we

set δ = P (MTR|MMTR) = 0.25. In both models we set the hyperparameters as follows: for

k = 1, 2, . . . , 10, µ̄k = 0, γk = 1, νk = 1, and Sk = 1/10. One Markov chain was obtained

for each model fit with 330,000 iterations, 30,000 of which were used as the tuning period

for the Metropolis-Hastings steps and were thrown away as burn in. Because so many of the

parameters of interest are unidentified in the likelihood by design, it takes a very large number

of iterations to adequately characterize the posterior. Essentially the chain mixes very poorly

for the unidentified parameters, and some of those parameters are directly relevant to our

scientific question.

Table 4.2 contains the post-stratified estimates of the mean of the ATE distribution and the

mean of the ATT distribution using the models based on θ. In the unconstrained model the

only source of learning about the TE parameters is the worst case bounds and, as a result, the

estimates of the mean treatment effects parameters are close to zero. In the other models, the

credible intervals do not contain zero. Both the MTS and MMTR assumptions strongly suggest

that the mean ATE and mean ATT are larger than zero with more uncertainty about ATT, and
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combining these two assumptions only serves to reinforce this finding. With the probabilistic

prior the estimates are still large but the intervals are much wider and now include zero,

suggesting that we do not have strong evidence of a positive treatment effect.

Table 4.2: Estimates of post-stratified mean treatment effects parameters based on models
using θ under a variety of prior assumptions. Under Prob we assume that η = 0.8 and ε = 0.5.
Intervals are 95% posterior credible intervals for the mean of the post-stratified predictive
distribution as a function of the model parameters.

E[ATE] 2.5% 97.5% E[ATT] 2.5% 97.5%

UN 0.10 -0.39 0.60 0.22 -0.35 0.81

MTS 0.45 0.11 0.64 0.53 0.08 0.83

MMTR 0.45 0.11 0.64 0.53 0.08 0.82

MTS+MMTR 0.46 0.13 0.64 0.54 0.10 0.83

Prob 0.42 -0.17 0.64 0.50 -0.16 0.82

The estimates for the model using φ are in Table 4.3. The unconstrained prior yields similar

estimates for the mean of the treatment effects distributions in this model as it does in the model

using θ, though it has a much smaller degree of uncertainty. The posterior credible interval for

the mean is much narrower under the φ prior though still centered at the same value. Under

the other priors that are shared across both models (MTS, MMTR, MTS+MMTR) the model

using θ yields substantially higher estimates and intervals bounded significantly farther away

from zero. The difference between the results using θ and φ could be driven by the priors –

while the MTS prior for both models uses the same hyperparameters, their meaning is not the

same across the two models. So it may be that in the θ model it puts more mass on a positive

treatment effects or has a greater or lesser degree of shrinkage between the groups. This issue

merits further investigation. As a result of the difference between the θ and φ models in the

unconstrained prior, the probabilistic prior under φ yields a credible interval which only barely

contains zero and more strongly suggests a positive treatment effect.

A big difference in the φ model is that we are able to do more than estimate and construct

intervals for the mean of the treatment effects distribution – we can examine the full posterior

predictive treatment effects distributions and integrate out the model parameters. In Table 4.3

we see posterior predictive probabilities of obtaining a negative, neutral, and positive treatment

effect under a variety of prior assumptions. We can see that the constrained priors seem to
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differ compared to the unconstrained prior typically by moving mass from a negative effect to

either a neutral or positive effect, though occasionally mass is moved from a neutral effect to a

positive effect. By and large, most of the estimates of the probability of a negative effect are at

about 0.1 — the only exceptions use MTR which this probability to be zero. So it seems fairly

likely that the NSLP is not harming food security, though the posterior predictive probability

of a positive effect is generally about 0.3 to 0.4.

4.8 Conclusions and Further Work

Typically in treatment effect problems such as program evaluation, we assume that certain

unidentified parameters are bounded by some function of identified parameters to partially

identify the treatment effects. While these assumptions are useful to help identify the parame-

ters we are interested in, they are not always credible. Rather than assume that they hold with

certainty, we develop an approach that allows us to assume that a given constraint holds with

some probability. Using this approach and several commonly used constraints, we constructed

two models and a prior for each that allows for a sliding scale of partial identification depend-

ing on how strongly we assert that each of the constraints hold. Both models were extended

to a hierarchical analysis of sub-populations that allows for post-stratification to correct for

sample-population mismatch and to potentially learn about the differences between various

sub-populations.

We then applied the models to analyzing whether the NSLP increases food security among

income-eligible children by breaking children in the data set into groups based on the ratio of

household income to the poverty level. This analysis suggests that the program at least does no

harm under a wide variety of assumptions, but there is not strong evidence that the program

helps. One key problem with the analysis, however, is the only covariate we took into account

is income. This causes two problems. First it is likely that there is more information in the

data about which sorts of children are more likely to be helped by the program just by taking

into account race, parents’ age, etc, and this is likely biasing our estimates. Second, the sample

is likely still not representative of the population, though this can be fixed by post-stratifying

based on more variables.
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Post-stratifying based on more variables will increase the number of groups in the hier-

archical models. A key problem with expanding the number of groups is that MCMC slows

down as the number of groups increases, and the number of groups increases rapidly with the

number of covariates of interest. Our analysis used six income groups. If we add five parents’

age categories, four categories for race plus a Hispanic indicator, a sex indicator, two child’s age

categories, a married parents indicator, four household size categories, and four education level

categories we have 30, 720 subgroups and thus 307, 200 group level parameters. Furthermore,

it is unlikely that we have more than one observation is almost all of these groups and the vast

majority of them we will have zero observations. By focusing on subgroups, we are effectively

forcing ourselves to consider all possible interactions, which is probably not necessary. So we

might be able to get the group size down by considering some sort of linear model at the group

level. For example, instead of giving every group its own mean, we could make each group’s

mean is a linear function of a certain set of covariates plus a group specific error. This does

not completely remove the computational problems since we would still have a large number

of groups, but something on the order of 100 is much more manageable.

As it stands, MCMC for the models above will work well when the number of groups

is relatively small – in the hundreds at most. For many more groups than that posterior

computation may take something on the order of days to complete because we need such large

sample sizes due to poor mixing of unidentified parameters.
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Table 4.3: Estimates of the post-stratified treatment effects distributions based on models using
φ under a variety of prior assumptions. Under Prob we assume that η = 0.8, ε = 0.5, and δ =
0.25. Intervals are 95% posterior credible intervals for the mean of the post-stratified predictive
distribution as a function of the model parameters. Both the ATE and ATT distributions are
discrete on {−1, 0, 1} and the post-stratified posterior predictive probabilities of each of these
possibilities is listed to the right of the estimate of the mean.

E[ATE] 2.5% 97.5% P(ATE=-1) P(ATE=0) P(ATE=1)

UN 0.10 -0.26 0.45 0.20 0.49 0.31

MTS 0.29 0.05 0.54 0.11 0.49 0.40

MMTR 0.31 0.05 0.57 0.08 0.53 0.39

MTR 0.30 0.02 0.59 0.00 0.70 0.30

MTS+MMTR 0.30 0.07 0.54 0.10 0.51 0.40

MTS+MTR 0.35 0.07 0.61 0.00 0.65 0.35

Prob 0.28 -0.04 0.56 0.10 0.52 0.38

E[ATT] 2.5% 97.5% P(ATT=-1) P(ATT=0) P(ATT=1)

UN 0.22 -0.20 0.70 0.15 0.49 0.37

MTS 0.35 0.03 0.71 0.13 0.39 0.48

MMTR 0.38 0.03 0.75 0.09 0.45 0.47

MTR 0.36 0.00 0.77 0.00 0.64 0.36

MTS+MMTR 0.35 0.05 0.71 0.11 0.42 0.47

MTS+MTR 0.41 0.06 0.79 0.00 0.59 0.41

Prob 0.35 -0.00 0.73 0.11 0.44 0.45
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